table of contents
std::generate_canonical(3) | C++ Standard Libary | std::generate_canonical(3) |
NAME¶
std::generate_canonical - std::generate_canonical
Synopsis¶
Defined in header <random>
template< class RealType, std::size_t Bits, class Generator > (since
C++11)
RealType generate_canonical( Generator& g );
Generates a random floating point number in range [0, 1).
To generate enough entropy, generate_canonical() will call g() exactly
\(\small k\)k
times, where \(\small k = \max(1, \lceil \frac{b}{\log_2 R} \rceil)\)k =
max(1, ⌈ b
/ log
2 R ⌉) and
* b = std::min(Bits, std::size_t
{std::numeric_limits<RealType>::digits}),
* R = g.max() - g.min() + 1.
Parameters¶
g - generator to use to acquire entropy
Return value¶
Floating point value in range [0, 1).
Exceptions¶
None except from those thrown by g.
Notes¶
Some existing implementations have a bug where they may
occasionally return 1.0 if
RealType is float GCC #63176 LLVM #18767 MSVC STL #1074. This is LWG issue
2524.
Example¶
Produce random numbers with 10 bits of randomness: this may
produce only k * R
distinct values.
// Run this code
#include <iostream>
#include <random>
int main()
{
std::random_device rd;
std::mt19937 gen(rd());
for (int n = 0; n < 10; ++n)
std::cout << std::generate_canonical<double, 10>(gen) << '
';
std::cout << '\n';
}
Possible output:¶
0.208143 0.824147 0.0278604 0.343183 0.0173263 0.864057 0.647037 0.539467 0.0583497 0.609219
See also¶
uniform_real_distribution produces real values evenly distributed
across a range
(C++11) (class template)
2024.06.10 | http://cppreference.com |