table of contents
        
      
      
    | std::generate_canonical(3) | C++ Standard Libary | std::generate_canonical(3) | 
NAME¶
std::generate_canonical - std::generate_canonical
Synopsis¶
 Defined in header <random>
  
   template< class RealType, std::size_t Bits, class Generator > (since
    C++11)
  
   RealType generate_canonical( Generator& g );
  
   Generates a random floating point number in range [0, 1).
  
   To generate enough entropy, generate_canonical() will call g() exactly
    \(\small k\)k
  
   times, where \(\small k = \max(1, \lceil \frac{b}{\log_2 R} \rceil)\)k =
    max(1, ⌈ b
  
   / log
  
   2 R ⌉) and
  
   * b = std::min(Bits, std::size_t
    {std::numeric_limits<RealType>::digits}),
  
   * R = g.max() - g.min() + 1.
Parameters¶
g - generator to use to acquire entropy
Return value¶
Floating point value in range [0, 1).
Exceptions¶
None except from those thrown by g.
Notes¶
 Some existing implementations have a bug where they may
    occasionally return 1.0 if
  
   RealType is float GCC #63176 LLVM #18767 MSVC STL #1074. This is LWG issue
    2524.
Example¶
 Produce random numbers with 10 bits of randomness: this may
    produce only k * R
  
   distinct values.
// Run this code
  
   #include <iostream>
  
   #include <random>
  
   int main()
  
   {
  
   std::random_device rd;
  
   std::mt19937 gen(rd());
  
   for (int n = 0; n < 10; ++n)
  
   std::cout << std::generate_canonical<double, 10>(gen) << '
    ';
  
   std::cout << '\n';
  
   }
Possible output:¶
0.208143 0.824147 0.0278604 0.343183 0.0173263 0.864057 0.647037 0.539467 0.0583497 0.609219
See also¶
 uniform_real_distribution produces real values evenly distributed
    across a range
  
   (C++11) (class template)
| 2024.06.10 | http://cppreference.com |