std::chi_squared_distribution(3) | C++ Standard Libary | std::chi_squared_distribution(3) |
NAME¶
std::chi_squared_distribution - std::chi_squared_distribution
Synopsis¶
Defined in header <random>
template< class RealType = double > (since C++11)
class chi_squared_distribution;
The chi_squared_distribution produces random numbers \(\small x>0\)x>0
according to
the Chi-squared distribution:
\({\small f(x;n) = }\frac{x^{(n/2)-1}\exp{(-x/2)} }{\Gamma{(n/2)}2^{n/2}
}\)f(x;n) =
x(n/2)-1
e^-x/2
Γ(n/2) 2n/2
\(\small\Gamma\)Γ is the Gamma function (See also std::tgamma) and
\(\small n\)n are
the degrees of freedom (default 1).
std::chi_squared_distribution satisfies all requirements of
RandomNumberDistribution.
Template parameters¶
RealType - The result type generated by the generator. The effect
is undefined if
this is not one of float, double, or long double.
Member types¶
Member type Definition
result_type (C++11) RealType
param_type (C++11) the type of the parameter set, see
RandomNumberDistribution.
Member functions¶
constructor constructs new distribution
(C++11) (public member function)
reset resets the internal state of the distribution
(C++11) (public member function)
Generation¶
operator() generates the next random number in the distribution
(C++11) (public member function)
Characteristics¶
n returns the degrees of freedom (\(\small n\)n) distribution
parameter
(C++11) (public member function)
param gets or sets the distribution parameter object
(C++11) (public member function)
min returns the minimum potentially generated value
(C++11) (public member function)
max returns the maximum potentially generated value
(C++11) (public member function)
Non-member functions¶
operator==
operator!= compares two distribution objects
(C++11) (function)
(C++11)(removed in C++20)
operator<< performs stream input and output on pseudo-random number
operator>> distribution
(C++11) (function template)
Example¶
// Run this code
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <vector>
template<int Height = 5, int BarWidth = 1, int Padding = 1, int Offset =
0, class Seq>
void draw_vbars(Seq&& s, const bool DrawMinMax = true)
{
static_assert(0 < Height and 0 < BarWidth and 0 <= Padding and 0
<= Offset);
auto cout_n = [](auto&& v, int n = 1)
{
while (n-- > 0)
std::cout << v;
};
const auto [min, max] = std::minmax_element(std::cbegin(s),
std::cend(s));
std::vector<std::div_t> qr;
for (typedef decltype(*std::cbegin(s)) V; V e : s)
qr.push_back(std::div(std::lerp(V(0), 8 * Height,
(e - *min) / (*max - *min)), 8));
for (auto h{Height}; h-- > 0; cout_n('\n'))
{
cout_n(' ', Offset);
for (auto dv : qr)
{
const auto q{dv.quot}, r{dv.rem};
unsigned char d[]{0xe2, 0x96, 0x88, 0}; // Full Block: '█'
q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0;
cout_n(d, BarWidth), cout_n(' ', Padding);
}
if (DrawMinMax && Height > 1)
Height - 1 == h ? std::cout << "┬ " << *max:
h ? std::cout << "│ "
: std::cout << "┴ " << *min;
}
}
int main()
{
std::random_device rd{};
std::mt19937 gen{rd()};
auto χ2 = [&gen](const float dof)
{
std::chi_squared_distribution<float> d{dof /* n */};
const int norm = 1'00'00;
const float cutoff = 0.002f;
std::map<int, int> hist{};
for (int n = 0; n != norm; ++n)
++hist[std::round(d(gen))];
std::vector<float> bars;
std::vector<int> indices;
for (auto const& [n, p] : hist)
if (float x = p * (1.0 / norm); cutoff < x)
{
bars.push_back(x);
indices.push_back(n);
}
std::cout << "dof = " << dof <<
":\n";
for (draw_vbars<4, 3>(bars); int n : indices)
std::cout << std::setw(2) << n << " ";
std::cout << "\n\n";
};
for (float dof : {1.f, 2.f, 3.f, 4.f, 6.f, 9.f})
χ2(dof);
}
Possible output:¶
dof = 1:
███ ┬ 0.5271
███ │
███ ███ │
███ ███ ▇▇▇
▃▃▃ ▂▂▂ ▁▁▁
▁▁▁ ▁▁▁ ▁▁▁
┴ 0.003
0 1 2 3 4 5 6 7 8
dof = 2:
███ ┬ 0.3169
▆▆▆ ███ ▃▃▃
│
███ ███ ███
▄▄▄ │
███ ███ ███
███ ▇▇▇ ▄▄▄
▃▃▃ ▂▂▂ ▁▁▁
▁▁▁ ▁▁▁ ┴ 0.004
0 1 2 3 4 5 6 7 8 9 10
dof = 3:
███ ▃▃▃ ┬ 0.2439
███ ███ ▄▄▄
│
▃▃▃ ███ ███
███ ▇▇▇ ▁▁▁
│
███ ███ ███
███ ███ ███
▆▆▆ ▄▄▄ ▃▃▃
▂▂▂ ▁▁▁ ▁▁▁
▁▁▁ ┴ 0.0033
0 1 2 3 4 5 6 7 8 9 10 11 12
dof = 4:
▂▂▂ ███ ▃▃▃
┬ 0.1864
███ ███ ███
███ ▂▂▂ │
███ ███ ███
███ ███ ▅▅▅
▁▁▁ │
▅▅▅ ███ ███
███ ███ ███
███ ███ ▆▆▆
▄▄▄ ▃▃▃ ▂▂▂
▂▂▂ ▁▁▁ ▁▁▁
▁▁▁ ┴ 0.0026
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dof = 6:
▅▅▅ ▇▇▇ ███
▂▂▂ ┬ 0.1351
▅▅▅ ███ ███
███ ███ ▇▇▇
▁▁▁ │
▁▁▁ ███ ███
███ ███ ███
███ ███ ▅▅▅
▂▂▂ │
▁▁▁ ███ ███
███ ███ ███
███ ███ ███
███ ███ ███
▅▅▅ ▄▄▄ ▃▃▃
▂▂▂ ▁▁▁ ▁▁▁
▁▁▁ ┴ 0.0031
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
dof = 9:
▅▅▅ ▇▇▇ ███
███ ▄▄▄ ▂▂▂
┬ 0.1044
▃▃▃ ███ ███
███ ███ ███
███ ▅▅▅ ▁▁▁
│
▄▄▄ ███ ███
███ ███ ███
███ ███ ███
███ ▆▆▆ ▃▃▃
│
▄▄▄ ███ ███
███ ███ ███
███ ███ ███
███ ███ ███
███ ███ ▆▆▆
▄▄▄ ▃▃▃ ▂▂▂
▁▁▁ ▁▁▁ ▁▁▁
┴ 0.0034
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
External links¶
Weisstein, Eric W. "Chi-Squared Distribution." From
MathWorld — A Wolfram Web
Resource.
Chi-squared distribution — From Wikipedia.
2024.06.10 | http://cppreference.com |