| std::chi_squared_distribution(3) | C++ Standard Libary | std::chi_squared_distribution(3) | 
NAME¶
std::chi_squared_distribution - std::chi_squared_distribution
Synopsis¶
 Defined in header <random>
  
   template< class RealType = double > (since C++11)
  
   class chi_squared_distribution;
  
   The chi_squared_distribution produces random numbers \(\small x>0\)x>0
    according to
  
   the Chi-squared distribution:
  
   \({\small f(x;n) = }\frac{x^{(n/2)-1}\exp{(-x/2)} }{\Gamma{(n/2)}2^{n/2}
    }\)f(x;n) =
  
   x(n/2)-1
  
   e^-x/2
  
   Γ(n/2) 2n/2
  
   \(\small\Gamma\)Γ is the Gamma function (See also std::tgamma) and
    \(\small n\)n are
  
   the degrees of freedom (default 1).
  
   std::chi_squared_distribution satisfies all requirements of
  
   RandomNumberDistribution.
Template parameters¶
 RealType - The result type generated by the generator. The effect
    is undefined if
  
   this is not one of float, double, or long double.
Member types¶
 Member type Definition
  
   result_type (C++11) RealType
  
   param_type (C++11) the type of the parameter set, see
    RandomNumberDistribution.
Member functions¶
 constructor constructs new distribution
  
   (C++11) (public member function)
  
   reset resets the internal state of the distribution
  
   (C++11) (public member function)
Generation¶
 operator() generates the next random number in the distribution
  
   (C++11) (public member function)
Characteristics¶
 n returns the degrees of freedom (\(\small n\)n) distribution
    parameter
  
   (C++11) (public member function)
  
   param gets or sets the distribution parameter object
  
   (C++11) (public member function)
  
   min returns the minimum potentially generated value
  
   (C++11) (public member function)
  
   max returns the maximum potentially generated value
  
   (C++11) (public member function)
Non-member functions¶
 operator==
  
   operator!= compares two distribution objects
  
   (C++11) (function)
  
   (C++11)(removed in C++20)
  
   operator<< performs stream input and output on pseudo-random number
  
   operator>> distribution
  
   (C++11) (function template)
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <cmath>
  
   #include <iomanip>
  
   #include <iostream>
  
   #include <map>
  
   #include <random>
  
   #include <vector>
  
   template<int Height = 5, int BarWidth = 1, int Padding = 1, int Offset =
    0, class Seq>
  
   void draw_vbars(Seq&& s, const bool DrawMinMax = true)
  
   {
  
   static_assert(0 < Height and 0 < BarWidth and 0 <= Padding and 0
    <= Offset);
  
   auto cout_n = [](auto&& v, int n = 1)
  
   {
  
   while (n-- > 0)
  
   std::cout << v;
  
   };
  
   const auto [min, max] = std::minmax_element(std::cbegin(s),
  std::cend(s));
  
   std::vector<std::div_t> qr;
  
   for (typedef decltype(*std::cbegin(s)) V; V e : s)
  
   qr.push_back(std::div(std::lerp(V(0), 8 * Height,
  
   (e - *min) / (*max - *min)), 8));
  
   for (auto h{Height}; h-- > 0; cout_n('\n'))
  
   {
  
   cout_n(' ', Offset);
  
   for (auto dv : qr)
  
   {
  
   const auto q{dv.quot}, r{dv.rem};
  
   unsigned char d[]{0xe2, 0x96, 0x88, 0}; // Full Block: '█'
  
   q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0;
  
   cout_n(d, BarWidth), cout_n(' ', Padding);
  
   }
  
   if (DrawMinMax && Height > 1)
  
   Height - 1 == h ? std::cout << "┬ " << *max:
  
   h ? std::cout << "│ "
  
   : std::cout << "┴ " << *min;
  
   }
  
   }
  
   int main()
  
   {
  
   std::random_device rd{};
  
   std::mt19937 gen{rd()};
  
   auto χ2 = [&gen](const float dof)
  
   {
  
   std::chi_squared_distribution<float> d{dof /* n */};
  
   const int norm = 1'00'00;
  
   const float cutoff = 0.002f;
  
   std::map<int, int> hist{};
  
   for (int n = 0; n != norm; ++n)
  
   ++hist[std::round(d(gen))];
  
   std::vector<float> bars;
  
   std::vector<int> indices;
  
   for (auto const& [n, p] : hist)
  
   if (float x = p * (1.0 / norm); cutoff < x)
  
   {
  
   bars.push_back(x);
  
   indices.push_back(n);
  
   }
  
   std::cout << "dof = " << dof <<
  ":\n";
  
   for (draw_vbars<4, 3>(bars); int n : indices)
  
   std::cout << std::setw(2) << n << " ";
  
   std::cout << "\n\n";
  
   };
  
   for (float dof : {1.f, 2.f, 3.f, 4.f, 6.f, 9.f})
  
   χ2(dof);
  
   }
Possible output:¶
 dof = 1:
  
   ███ ┬ 0.5271
  
   ███ │
  
   ███ ███ │
  
   ███ ███ ▇▇▇
    ▃▃▃ ▂▂▂ ▁▁▁
    ▁▁▁ ▁▁▁ ▁▁▁
    ┴ 0.003
  
   0 1 2 3 4 5 6 7 8
  
   dof = 2:
  
   ███ ┬ 0.3169
  
   ▆▆▆ ███ ▃▃▃
    │
  
   ███ ███ ███
    ▄▄▄ │
  
   ███ ███ ███
    ███ ▇▇▇ ▄▄▄
    ▃▃▃ ▂▂▂ ▁▁▁
    ▁▁▁ ▁▁▁ ┴ 0.004
  
   0 1 2 3 4 5 6 7 8 9 10
  
   dof = 3:
  
   ███ ▃▃▃ ┬ 0.2439
  
   ███ ███ ▄▄▄
    │
  
   ▃▃▃ ███ ███
    ███ ▇▇▇ ▁▁▁
    │
  
   ███ ███ ███
    ███ ███ ███
    ▆▆▆ ▄▄▄ ▃▃▃
    ▂▂▂ ▁▁▁ ▁▁▁
    ▁▁▁ ┴ 0.0033
  
   0 1 2 3 4 5 6 7 8 9 10 11 12
  
   dof = 4:
  
   ▂▂▂ ███ ▃▃▃
    ┬ 0.1864
  
   ███ ███ ███
    ███ ▂▂▂ │
  
   ███ ███ ███
    ███ ███ ▅▅▅
    ▁▁▁ │
  
   ▅▅▅ ███ ███
    ███ ███ ███
    ███ ███ ▆▆▆
    ▄▄▄ ▃▃▃ ▂▂▂
    ▂▂▂ ▁▁▁ ▁▁▁
    ▁▁▁ ┴ 0.0026
  
   0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  
   dof = 6:
  
   ▅▅▅ ▇▇▇ ███
    ▂▂▂ ┬ 0.1351
  
   ▅▅▅ ███ ███
    ███ ███ ▇▇▇
    ▁▁▁ │
  
   ▁▁▁ ███ ███
    ███ ███ ███
    ███ ███ ▅▅▅
    ▂▂▂ │
  
   ▁▁▁ ███ ███
    ███ ███ ███
    ███ ███ ███
    ███ ███ ███
    ▅▅▅ ▄▄▄ ▃▃▃
    ▂▂▂ ▁▁▁ ▁▁▁
    ▁▁▁ ┴ 0.0031
  
   0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
  
   dof = 9:
  
   ▅▅▅ ▇▇▇ ███
    ███ ▄▄▄ ▂▂▂
    ┬ 0.1044
  
   ▃▃▃ ███ ███
    ███ ███ ███
    ███ ▅▅▅ ▁▁▁
    │
  
   ▄▄▄ ███ ███
    ███ ███ ███
    ███ ███ ███
    ███ ▆▆▆ ▃▃▃
    │
  
   ▄▄▄ ███ ███
    ███ ███ ███
    ███ ███ ███
    ███ ███ ███
    ███ ███ ▆▆▆
    ▄▄▄ ▃▃▃ ▂▂▂
    ▁▁▁ ▁▁▁ ▁▁▁
    ┴ 0.0034
  
   2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
External links¶
 Weisstein, Eric W. "Chi-Squared Distribution." From
    MathWorld — A Wolfram Web
  
   Resource.
  
   Chi-squared distribution — From Wikipedia.
| 2024.06.10 | http://cppreference.com |