table of contents
catanh(3) | Library Functions Manual | catanh(3) |
NAME¶
catanh, catanhf, catanhl - complex arc tangents hyperbolic
LIBRARY¶
Math library (libm, -lm)
SYNOPSIS¶
#include <complex.h>
double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z);
DESCRIPTION¶
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
ATTRIBUTES¶
For an explanation of the terms used in this section, see attributes(7).
Interface | Attribute | Value |
catanh (), catanhf (), catanhl () | Thread safety | MT-Safe |
STANDARDS¶
C11, POSIX.1-2008.
HISTORY¶
glibc 2.1. C99, POSIX.1-2001.
EXAMPLES¶
/* Link with "-lm" */ #include <complex.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main(int argc, char *argv[]) {
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));
exit(EXIT_SUCCESS); }
SEE ALSO¶
2024-06-15 | Linux man-pages (unreleased) |