| BN_ADD(3) | Library Functions Manual | BN_ADD(3) |
NAME¶
BN_add, BN_uadd,
BN_sub, BN_usub,
BN_mul, BN_sqr,
BN_div, BN_mod,
BN_nnmod, BN_mod_add,
BN_mod_add_quick,
BN_mod_sub,
BN_mod_sub_quick,
BN_mod_mul, BN_mod_sqr,
BN_mod_lshift,
BN_mod_lshift_quick,
BN_mod_lshift1,
BN_mod_lshift1_quick,
BN_exp, BN_mod_exp,
BN_gcd — arithmetic
operations on BIGNUMs
SYNOPSIS¶
#include
<openssl/bn.h>
int
BN_add(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b);
int
BN_uadd(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b);
int
BN_sub(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b);
int
BN_usub(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b);
int
BN_mul(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, BN_CTX *ctx);
int
BN_sqr(BIGNUM *r,
const BIGNUM *a, BN_CTX
*ctx);
int
BN_div(BIGNUM *dv,
BIGNUM *rem, const BIGNUM *a,
const BIGNUM *d, BN_CTX
*ctx);
int
BN_mod(BIGNUM *rem,
const BIGNUM *a, const BIGNUM
*m, BN_CTX *ctx);
int
BN_nnmod(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*m, BN_CTX *ctx);
int
BN_mod_add(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, const BIGNUM *m, BN_CTX
*ctx);
int
BN_mod_add_quick(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, const BIGNUM *m);
int
BN_mod_sub(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, const BIGNUM *m, BN_CTX
*ctx);
int
BN_mod_sub_quick(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, const BIGNUM *m);
int
BN_mod_mul(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, const BIGNUM *m, BN_CTX
*ctx);
int
BN_mod_sqr(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*m, BN_CTX *ctx);
int
BN_mod_lshift(BIGNUM *r,
const BIGNUM *a, int n,
const BIGNUM *m, BN_CTX
*ctx);
int
BN_mod_lshift_quick(BIGNUM *r,
const BIGNUM *a, int n,
const BIGNUM *m);
int
BN_mod_lshift1(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*m, BN_CTX *ctx);
int
BN_mod_lshift1_quick(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*m);
int
BN_exp(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*p, BN_CTX *ctx);
int
BN_mod_exp(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*p, const BIGNUM *m, BN_CTX
*ctx);
int
BN_gcd(BIGNUM *r,
const BIGNUM *a, const BIGNUM
*b, BN_CTX *ctx);
DESCRIPTION¶
BN_add()
adds a and b and places the
result in r (r=a+b).
r may be the same BIGNUM as
a or b.
BN_uadd()
adds the absolute values of a and
b and places the result in r
(r=|a|+|b|). r may be the same
BIGNUM as a or
b.
BN_sub()
subtracts b from a and places
the result in r (r=a-b).
r may be the same BIGNUM as
a or b.
BN_usub()
subtracts the absolute value of b from the absolute
value of a and places the result in
r (r=|a|-|b|). It requires the
absolute value of a to be greater than the absolute
value of b; otherwise it will fail.
r may be the same BIGNUM as
a or b.
BN_mul()
multiplies a and b and places
the result in r (r=a*b).
r may be the same BIGNUM as
a or b. For multiplication by
powers of 2, use BN_lshift(3).
BN_sqr()
takes the square of a and places the result in
r (r=a^2).
r and a may be the same
BIGNUM. This function is faster than
BN_mul(r,
a, a).
BN_div()
divides a by d and places the
result in dv and the remainder in
rem (dv=a/d,
rem=a%d). If the flag
BN_FLG_CONSTTIME is set on a
or d, it operates in constant time. Either of
dv and rem may be
NULL, in which case the respective value is not
returned. The result is rounded towards zero; thus if
a is negative, the remainder will be zero or negative.
For division by powers of 2, use
BN_rshift(3).
BN_mod()
corresponds to BN_div() with
dv set to NULL. It is
implemented as a macro.
BN_nnmod()
reduces a modulo m and places
the non-negative remainder in r.
BN_mod_add()
adds a to b modulo
m and places the non-negative result in
r.
BN_mod_add_quick()
is a variant of BN_mod_add() that requires
a and b to both be non-negative
and smaller than m. If any of these constraints are
violated, it silently produces wrong results.
BN_mod_sub()
subtracts b from a modulo
m and places the non-negative result in
r.
BN_mod_sub_quick()
is a variant of BN_mod_sub() that requires
a and b to both be non-negative
and smaller than m. If any of these constraints are
violated, it silently produces wrong results.
BN_mod_mul()
multiplies a by b and finds the
non-negative remainder respective to modulus m
(r=(a*b)%m). r may be the same
BIGNUM as a or
b. For a more efficient algorithm for repeated
computations using the same modulus, see
BN_mod_mul_montgomery(3).
BN_mod_sqr()
takes the square of a modulo m
and places the result in r.
BN_mod_lshift()
shifts a left by n bits, reduces
the result modulo m, and places the non-negative
remainder in r (r=a*2^n mod
m).
BN_mod_lshift1()
shifts a left by one bit, reduces the result modulo
m, and places the non-negative remainder in
r (r=a*2 mod m).
BN_mod_lshift_quick()
and
BN_mod_lshift1_quick()
are variants of BN_mod_lshift() and
BN_mod_lshift1(), respectively, that require
a to be non-negative and less than
m. If either of these constraints is violated, they
sometimes fail and sometimes silently produce wrong results.
BN_exp()
raises a to the p-th power and
places the result in r
(r=a^p). This function is faster than repeated
applications of BN_mul().
BN_mod_exp()
computes a to the p-th power
modulo m (r=(a^p)%m). If the
flag BN_FLG_CONSTTIME is set on
p, it operates in constant time. This function uses
less time and space than BN_exp().
BN_gcd()
computes the greatest common divisor of a and
b and places the result in r.
r may be the same BIGNUM as
a or b.
For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see BN_CTX_new(3).
Unless noted otherwise, the result BIGNUM must be different from the arguments.
RETURN VALUES¶
For all functions, 1 is returned for success, 0 on error. The return value should always be checked, for example:
if (!BN_add(r,a,b)) goto
err;The error codes can be obtained by ERR_get_error(3).
SEE ALSO¶
BN_add_word(3), BN_CTX_new(3), BN_new(3), BN_set_bit(3), BN_set_flags(3), BN_set_negative(3)
HISTORY¶
BN_add(),
BN_sub(), BN_mul(),
BN_sqr(), BN_div(),
BN_mod(), BN_mod_mul(),
BN_mod_exp(), and BN_gcd()
first appeared in SSLeay 0.5.1. BN_exp() first
appeared in SSLeay 0.9.0. All these functions have been available since
OpenBSD 2.4.
BN_uadd(),
BN_usub(), and the ctx
argument to BN_mul() first appeared in SSLeay 0.9.1
and have been available since OpenBSD 2.6.
BN_nnmod(),
BN_mod_add(),
BN_mod_add_quick(),
BN_mod_sub(),
BN_mod_sub_quick(),
BN_mod_sqr(),
BN_mod_lshift(),
BN_mod_lshift_quick(),
BN_mod_lshift1(), and
BN_mod_lshift1_quick() first appeared in OpenSSL
0.9.7 and have been available since OpenBSD 3.2.
BUGS¶
Even if the BN_FLG_CONSTTIME flag is set
on a or b,
BN_gcd() neither fails nor operates in constant
time, potentially allowing timing side-channel attacks.
Even if the BN_FLG_CONSTTIME flag is set
on p, if the modulus m is even,
BN_mod_exp() does not operate in constant time,
potentially allowing timing side-channel attacks.
If BN_FLG_CONSTTIME is set on
p, BN_exp() fails instead of
operating in constant time.
| April 27, 2023 | Linux 6.4.0-150700.53.16-default |