table of contents
        
      
      
    | std::laguerre,std::laguerref,std::laguerrel(3) | C++ Standard Libary | std::laguerre,std::laguerref,std::laguerrel(3) | 
NAME¶
std::laguerre,std::laguerref,std::laguerrel - std::laguerre,std::laguerref,std::laguerrel
Synopsis¶
double laguerre( unsigned int n, double x );
  
   double laguerre( unsigned int n, float x );
  
   double laguerre( unsigned int n, long double x ); (1)
  
   float laguerref( unsigned int n, float x );
  
   long double laguerrel( unsigned int n, long double x );
  
   double laguerre( unsigned int n, IntegralType x ); (2)
  
   1) Computes the non-associated Laguerre polynomials of the degree n and
    argument x.
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
  
   As all special functions, laguerre is only guaranteed to be available in
    <cmath> if
  
   __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
    least
  
   201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
    including any
  
   standard library headers.
Parameters¶
 n - the degree of the polynomial, a value of unsigned integer
    type
  
   x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the nonassociated Laguerre polynomial of x, that is
  
   e^x
  
   n!
  
   dn
  
   dxn
  
   (xn
  
   e^-x), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
  
   * If the argument is NaN, NaN is returned and domain error is not reported.
  
   * If x is negative, a domain error may occur.
  
   * If n is greater or equal than 128, the behavior is
  implementation-defined.
Notes¶
 Implementations that do not support TR 29124 but support TR
    19768, provide this
  
   function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math.
  
   The Laguerre polynomials are the polynomial solutions of the equation xy,,
  
   + (1 - x)y,
  
   + ny = 0.
  
   The first few are:
  
   * laguerre(0, x) = 1.
  
   * laguerre(1, x) = -x + 1.
  
   * laguerre(2, x) =
  
   1
  
   2
  
   [x2
  
   - 4x + 2].
  
   * laguerre(3, x) =
  
   1
  
   6
  
   [-x3
  
   - 9x2
  
   - 18x + 6].
Example¶
(works as shown with gcc 6.0)
// Run this code
  
   #define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
  
   #include <cmath>
  
   #include <iostream>
  
   double L1(double x)
  
   {
  
   return -x + 1;
  
   }
  
   double L2(double x)
  
   {
  
   return 0.5 * (x * x - 4 * x + 2);
  
   }
  
   int main()
  
   {
  
   // spot-checks
  
   std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5)
    << '\n'
  
   << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n';
  
   }
Output:¶
 0.5=0.5
  
   0.125=0.125
See also¶
 assoc_laguerre associated Laguerre polynomials
  
   assoc_laguerref (function)
  
   assoc_laguerrel
External links¶
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.
| 2024.06.10 | http://cppreference.com |