table of contents
        
      
      
    | std::laguerre,std::laguerref,std::laguerrel(3) | C++ Standard Libary | std::laguerre,std::laguerref,std::laguerrel(3) | 
NAME¶
std::laguerre,std::laguerref,std::laguerrel - std::laguerre,std::laguerref,std::laguerrel
Synopsis¶
 Defined in header <cmath>
  
   double laguerre( unsigned int n, double x );
  
   float laguerre( unsigned int n, float x );
  
   long double laguerre( unsigned int n, long double x ); (1) (since
    C++17)
  
   float laguerref( unsigned int n, float x );
  
   long double laguerrel( unsigned int n, long double x );
  
   double laguerre( unsigned int n, IntegralType x ); (2) (since
    C++17)
  
   1) Computes the non-associated Laguerre polynomials of the degree n and
    argument x
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
Parameters¶
 n - the degree of the polymonial, a value of unsigned integer
    type
  
   x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the nonassociated Laguerre polynomial of x, that is
  
   e^x
  
   n!
  
   dn
  
   dxn
  
   (xn
  
   e^-x), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If x is negative, a domain error may occur
  
   * If n is greater or equal than 128, the behavior is
  implementation-defined
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math
  
   The Laguerre polynomials are the polynomial solutions of the equation xy,,
  
   +(1-x)y,
  
   +ny = 0
  
   The first few are:
  
   * laguerre(0, x) = 1
  
   * laguerre(1, x) = -x + 1
  
   * laguerre(2, x) =
  
   1
  
   2
  
   [x2
  
   -4x+2]
  
   * laguerre(3, x) =
  
   1
  
   6
  
   [-x3
  
   -9x2
  
   -18x+6]
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   double L1(double x) { return -x + 1; }
  
   double L2(double x) { return 0.5*(x*x-4*x+2); }
  
   int main()
  
   {
  
   // spot-checks
  
   std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5)
    << '\n'
  
   << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n'
  
   << std::laguerre(3, 0.0) << '=' << 1.0 << '\n';
  
   }
Output:¶
 0.5=0.5
  
   0.125=0.125
  
   1=1
See also¶
 assoc_laguerre
  
   assoc_laguerref
  
   assoc_laguerrel associated Laguerre polynomials
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.
| 2022.07.31 | http://cppreference.com |