std::void_t(3) | C++ Standard Libary | std::void_t(3) |
NAME¶
std::void_t - std::void_t
Synopsis¶
Defined in header <type_traits>
template< class... > (since C++17)
using void_t = void;
Utility metafunction that maps a sequence of any types to the type void. This
metafunction is a convenient way to leverage SFINAE prior to C++20's
concepts, in
particular for conditionally removing functions from the candidate set based
on
whether an expression is valid in the unevaluated context (such as operand to
decltype expression), allowing to exist separate function overloads or
specializations based on supported operations.
Notes¶
This metafunction is used in template metaprogramming to detect
ill-formed types in
SFINAE context:
// primary template handles types that have no nested ::type member:
template<class, class = void>
struct has_type_member : std::false_type {};
// specialization recognizes types that do have a nested ::type member:
template<class T>
struct has_type_member<T, std::void_t<typename T::type>> :
std::true_type {};
It can also be used to detect validity of an expression:
// primary template handles types that do not support pre-increment:
template<class, class = void>
struct has_pre_increment_member : std::false_type {};
// specialization recognizes types that do support pre-increment:
template<class T>
struct has_pre_increment_member<T,
std::void_t<decltype( ++std::declval<T&>() )>
> : std::true_type {};
Until the resolution of CWG issue 1558 (a C++11 defect), unused parameters in
alias
templates were not guaranteed to ensure SFINAE and could be ignored, so
earlier
compilers require a more complex definition of void_t, such as
template<typename... Ts>
struct make_void { typedef void type; };
template<typename... Ts>
using void_t = typename make_void<Ts...>::type;
Feature-test macro Value Std Feature
__cpp_lib_void_t 201411L (C++17) std::void_t
Example¶
// Run this code
#include <iomanip>
#include <iostream>
#include <map>
#include <type_traits>
#include <vector>
// Variable template that checks if a type has begin() and end() member
functions
template<typename, typename = void>
constexpr bool is_iterable = false;
template<typename T>
constexpr bool is_iterable<
T,
std::void_t<decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end())
>
> = true;
// An iterator trait those value_type is the value_type of the iterated
container,
// supports even back_insert_iterator (where value_type is void)
template<typename T, typename = void>
struct iterator_trait : std::iterator_traits<T> {};
template<typename T>
struct iterator_trait<T, std::void_t<typename T::container_type>>
: std::iterator_traits<typename T::container_type::iterator> {};
class A {};
#define SHOW(...) std::cout << std::setw(34) << #__VA_ARGS__ \
<< " == " << __VA_ARGS__ << '\n'
int main()
{
std::cout << std::boolalpha << std::left;
SHOW(is_iterable<std::vector<double>>);
SHOW(is_iterable<std::map<int, double>>);
SHOW(is_iterable<double>);
SHOW(is_iterable<A>);
using container_t = std::vector<int>;
container_t v;
static_assert(std::is_same_v<
container_t::value_type,
iterator_trait<decltype(std::begin(v))>::value_type
>);
static_assert(std::is_same_v<
container_t::value_type,
iterator_trait<decltype(std::back_inserter(v))>::value_type
>);
}
Output:¶
is_iterable<std::vector<double>> == true
is_iterable<std::map<int, double>> == true
is_iterable<double> == false
is_iterable<A> == false
See also¶
enable_if conditionally removes a function overload or template
specialization from
(C++11) overload resolution
(class template)
2024.06.10 | http://cppreference.com |