table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::tanh,std::tanhf,std::tanhl(3) | C++ Standard Libary | std::tanh,std::tanhf,std::tanhl(3) | 
NAME¶
std::tanh,std::tanhf,std::tanhl - std::tanh,std::tanhf,std::tanhl
Synopsis¶
 Defined in header <cmath>
  
   float tanh ( float num );
  
   double tanh ( double num ); (until C++23)
  
   long double tanh ( long double num );
  
   /* floating-point-type */ (since C++23)
  
   tanh ( /* floating-point-type */ num ); (constexpr since C++26)
  
   float tanhf( float num ); (1) (2) (since C++11)
  
   (constexpr since C++26)
  
   long double tanhl( long double num ); (3) (since C++11)
  
   (constexpr since C++26)
  
   Additional overloads (since C++11)
  
   Defined in header <cmath>
  
   template< class Integer > (A) (constexpr since C++26)
  
   double tanh ( Integer num );
  
   1-3) Computes the hyperbolic tangent of num.
  
   The library provides overloads of std::tanh for all cv-unqualified
    floating-point
  
   types as the type of the parameter.
  
   (since C++23)
  
   A) Additional overloads are provided for all integer types, which are
    (since C++11)
  
   treated as double.
Parameters¶
num - floating-point or integer value
Return value¶
If no errors occur, the hyperbolic tangent of num (tanh(num), or
  
   enum
  
   -e-num
  
   enum
  
   +e-num
  
   ) is returned.
  
   If a range error occurs due to underflow, the correct result (after rounding)
    is
  
   returned.
Error handling¶
Errors are reported as specified in math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic (IEC
  60559),
  
   * if the argument is ±0, ±0 is returned.
  
   * if the argument is ±∞, ±1 is returned.
  
   * if the argument is NaN, NaN is returned.
Notes¶
 POSIX specifies that in case of underflow, num is returned
    unmodified, and if that
  
   is not supported, and implementation-defined value no greater than DBL_MIN,
    FLT_MIN,
  
   and LDBL_MIN is returned.
  
   The additional overloads are not required to be provided exactly as (A). They
    only
  
   need to be sufficient to ensure that for their argument num of integer type,
  
   std::tanh(num) has the same effect as
    std::tanh(static_cast<double>(num)).
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   #include <random>
  
   double get_random_between(double min, double max)
  
   {
  
   std::random_device rd;
  
   std::mt19937 gen(rd());
  
   return std::uniform_real_distribution<>(min, max)(gen);
  
   }
  
   int main()
  
   {
  
   const double x = get_random_between(-1.0, 1.0);
  
   std::cout << std::showpos
  
   << "tanh(+1) = " << std::tanh(+1) << '\n'
  
   << "tanh(-1) = " << std::tanh(-1) << '\n'
  
   << "tanh(x)*sinh(2*x)-cos(2*x) = "
  
   << std::tanh(x) * std::sinh(2 * x) - std::cosh(2 * x) << '\n'
  
   // special values:
  
   << "tanh(+0) = " << std::tanh(+0.0) << '\n'
  
   << "tanh(-0) = " << std::tanh(-0.0) << '\n';
  
   }
Output:¶
 tanh(+1) = +0.761594
  
   tanh(-1) = -0.761594
  
   tanh(x)*sinh(2*x)-cos(2*x) = -1
  
   tanh(+0) = +0
  
   tanh(-0) = -0
See also¶
 sinh
  
   sinhf computes hyperbolic sine (\({\small\sinh{x}}\)sinh(x))
  
   sinhl (function)
  
   (C++11)
  
   (C++11)
  
   cosh
  
   coshf computes hyperbolic cosine (\({\small\cosh{x}}\)cosh(x))
  
   coshl (function)
  
   (C++11)
  
   (C++11)
  
   atanh
  
   atanhf computes the inverse hyperbolic tangent
  
   atanhl (\({\small\operatorname{artanh}{x}}\)artanh(x))
  
   (C++11) (function)
  
   (C++11)
  
   (C++11)
  
   computes hyperbolic tangent of a complex number
  
   tanh(std::complex) (\({\small\tanh{z}}\)tanh(z))
  
   (function template)
  
   tanh(std::valarray) applies the function std::tanh to each element of
    valarray
  
   (function template)
  
   C documentation for
  
   tanh
| 2024.06.10 | http://cppreference.com |