Scroll to navigation

std::stable_sort(3) C++ Standard Libary std::stable_sort(3)

NAME

std::stable_sort - std::stable_sort

Synopsis


Defined in header <algorithm>
template< class RandomIt > (1)
void stable_sort( RandomIt first, RandomIt last );
template< class ExecutionPolicy, class RandomIt >
void stable_sort( ExecutionPolicy&& policy, RandomIt first, (2) (since C++17)
RandomIt last );
template< class RandomIt, class Compare > (3)
void stable_sort( RandomIt first, RandomIt last, Compare comp );
template< class ExecutionPolicy, class RandomIt, class Compare >
void stable_sort( ExecutionPolicy&& policy, RandomIt first, (4) (since C++17)
RandomIt last, Compare comp );


Sorts the elements in the range [first, last) in non-descending order. The order of
equivalent elements is guaranteed to be preserved.


A sequence is sorted with respect to a comparator comp if for any iterator it
pointing to the sequence and any non-negative integer n such that it + n is a valid
iterator pointing to an element of the sequence, comp(*(it + n), *it) (or *(it + n)
< *it) evaluates to false.


1) Elements are compared using operator<.
3) Elements are compared using the given comparison function comp.
2,4) Same as (1,3), but executed according to policy. These overloads do not
participate in overload resolution unless
std::is_execution_policy_v<std::decay_t<ExecutionPolicy>>
(until C++20)
std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
(since C++20) is true.

Parameters


first, last - the range of elements to sort
policy - the execution policy to use. See execution policy for details.
comparison function object (i.e. an object that satisfies the
requirements of Compare) which returns true if the first argument
is less than (i.e. is ordered before) the second.


The signature of the comparison function should be equivalent to the
following:


bool cmp(const Type1 &a, const Type2 &b);
comp -
While the signature does not need to have const &, the function must
not modify the objects passed to it and must be able to accept all
values of type (possibly const) Type1 and Type2 regardless of value
category (thus, Type1 & is not allowed
, nor is Type1 unless for Type1 a move is equivalent to a copy
(since C++11)).
The types Type1 and Type2 must be such that an object of type
RandomIt can be dereferenced and then implicitly converted to both of
them.

Type requirements


-
RandomIt must meet the requirements of ValueSwappable and
LegacyRandomAccessIterator.
-
The type of dereferenced RandomIt must meet the requirements of MoveAssignable and
MoveConstructible.

Return value


(none)

Complexity


O(N·log(N)^2), where N = std::distance(first, last) applications of cmp. If
additional memory is available, then the complexity is O(N·log(N)).

Exceptions


The overloads with a template parameter named ExecutionPolicy report errors as
follows:


* If execution of a function invoked as part of the algorithm throws an exception
and ExecutionPolicy is one of the standard policies, std::terminate is called.
For any other ExecutionPolicy, the behavior is implementation-defined.
* If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Notes


This function attempts to allocate a temporary buffer equal in size to the sequence
to be sorted. If the allocation fails, the less efficient algorithm is chosen.

Possible implementation


See also the implementations in libstdc++ and libc++.

Example

// Run this code


#include <algorithm>
#include <iostream>
#include <string>
#include <vector>


struct Employee
{
int age;
std::string name; // Does not participate in comparisons
};


bool operator<(const Employee & lhs, const Employee & rhs)
{
return lhs.age < rhs.age;
}


int main()
{
std::vector<Employee> v =
{
{108, "Zaphod"},
{32, "Arthur"},
{108, "Ford"},
};


std::stable_sort(v.begin(), v.end());


for (const Employee & e : v)
std::cout << e.age << ", " << e.name << '\n';
}

Output:


32, Arthur
108, Zaphod
108, Ford

See also


sort sorts a range into ascending order
(function template)
partial_sort sorts the first N elements of a range
(function template)
divides elements into two groups while preserving their relative
stable_partition order
(function template)
ranges::stable_sort sorts a range of elements while preserving order between equal
(C++20) elements
(niebloid)

2022.07.31 http://cppreference.com