table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::sinh(std::complex)(3) | C++ Standard Libary | std::sinh(std::complex)(3) | 
NAME¶
std::sinh(std::complex) - std::sinh(std::complex)
Synopsis¶
 Defined in header <complex>
  
   template< class T > (since C++11)
  
   complex<T> sinh( const complex<T>& z );
  
   Computes complex hyperbolic sine of a complex value z.
Parameters¶
z - complex value
Return value¶
If no errors occur, complex hyperbolic sine of z is returned.
  
   Error handling and special values
  
   Errors are reported consistent with math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic,
  
   * std::sinh(std::conj(z)) == std::conj(std::sinh(z))
  
   * std::sinh(z) == -std::sinh(-z)
  
   * If z is (+0,+0), the result is (+0,+0)
  
   * If z is (+0,+∞), the result is (±0,NaN) (the sign of the real
    part is
  
   unspecified) and FE_INVALID is raised
  
   * If z is (+0,NaN), the result is (±0,NaN)
  
   * If z is (x,+∞) (for any positive finite x), the result is (NaN,NaN)
    and
  
   FE_INVALID is raised
  
   * If z is (x,NaN) (for any positive finite x), the result is (NaN,NaN) and
  
   FE_INVALID may be raised
  
   * If z is (+∞,+0), the result is (+∞,+0)
  
   * If z is (+∞,y) (for any positive finite y), the result is
    +∞cis(y)
  
   * If z is (+∞,+∞), the result is (±∞,NaN) (the
    sign of the real part is
  
   unspecified) and FE_INVALID is raised
  
   * If z is (+∞,NaN), the result is (±∞,NaN) (the sign of
    the real part is
  
   unspecified)
  
   * If z is (NaN,+0), the result is (NaN,+0)
  
   * If z is (NaN,y) (for any finite nonzero y), the result is (NaN,NaN) and
  
   FE_INVALID may be raised
  
   * If z is (NaN,NaN), the result is (NaN,NaN)
  
   where cis(y) is cos(y) + i sin(y).
Notes¶
Mathematical definition of hyperbolic sine is sinh z =
  
   ez
  
   -e-z
  
   2
  
   .
  
   Hyperbolic sine is an entire function in the complex plane and has no branch
    cuts.
  
   It is periodic with respect to the imaginary component, with period
    2πi.
Example¶
// Run this code
  
   #include <cmath>
  
   #include <complex>
  
   #include <iostream>
  
   int main()
  
   {
  
   std::cout << std::fixed;
  
   std::complex<double> z(1.0, 0.0); // behaves like real sinh along the
    real line
  
   std::cout << "sinh" << z << " = "
    << std::sinh(z)
  
   << " (sinh(1) = " << std::sinh(1) <<
    ")\n";
  
   std::complex<double> z2(0.0, 1.0); // behaves like sine along the
    imaginary line
  
   std::cout << "sinh" << z2 << " = "
    << std::sinh(z2)
  
   << " ( sin(1) = " << std::sin(1) <<
    ")\n";
  
   }
Output:¶
 sinh(1.000000,0.000000) = (1.175201,0.000000) (sinh(1) =
    1.175201)
  
   sinh(0.000000,1.000000) = (0.000000,0.841471) ( sin(1) = 0.841471)
See also¶
 computes hyperbolic cosine of a complex number
  
   cosh(std::complex) (\({\small\cosh{z}}\)cosh(z))
  
   (function template)
  
   computes hyperbolic tangent of a complex number
  
   tanh(std::complex) (\({\small\tanh{z}}\)tanh(z))
  
   (function template)
  
   asinh(std::complex) computes area hyperbolic sine of a complex number
  
   (C++11) (\({\small\operatorname{arsinh}{z}}\)arsinh(z))
  
   (function template)
  
   sinh
  
   sinhf computes hyperbolic sine (\({\small\sinh{x}}\)sinh(x))
  
   sinhl (function)
  
   (C++11)
  
   (C++11)
  
   sinh(std::valarray) applies the function std::sinh to each element of
    valarray
  
   (function template)
  
   C documentation for
  
   csinh
| 2024.06.10 | http://cppreference.com |