- Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::ratio_divide(3) | C++ Standard Libary | std::ratio_divide(3) | 
NAME¶
std::ratio_divide - std::ratio_divide
Synopsis¶
 Defined in header <ratio>
  
   template< class R1, class R2 > (since C++11)
  
   using ratio_divide = /* see below */;
  
   The alias template std::ratio_divide denotes the result of dividing two exact
  
   rational fractions represented by the std::ratio specializations R1 and
  R2.
  
   The result is a std::ratio specialization std::ratio<U, V>, such that
    given Num ==
  
   R1::num * R2::den and Denom == R1::den * R2::num (computed without arithmetic
  
   overflow), U is std::ratio<Num, Denom>::num and V is std::ratio<Num,
    Denom>::den.
Notes¶
 If U or V is not representable in std::intmax_t, the program is
    ill-formed. If Num
  
   or Denom is not representable in std::intmax_t, the program is ill-formed
    unless the
  
   implementation yields correct values for U and V.
  
   The above definition requires that the result of std::ratio_divide<R1,
    R2> be
  
   already reduced to lowest terms; for example,
    std::ratio_divide<std::ratio<1, 12>,
  
   std::ratio<1, 6>> is the same type as std::ratio<1, 2>.
Example¶
// Run this code
  
   #include <iostream>
  
   #include <ratio>
  
   int main()
  
   {
  
   using two_third = std::ratio<2, 3>;
  
   using one_sixth = std::ratio<1, 6>;
  
   using quotient = std::ratio_divide<two_third, one_sixth>;
  
   static_assert(std::ratio_equal_v<quotient, std::ratio<0B100,
    0X001>>);
  
   std::cout << "(2/3) / (1/6) = " << quotient::num
    << '/' << quotient::den << '\n';
  
   }
Output:¶
(2/3) / (1/6) = 4/1
See also¶
 ratio_multiply multiplies two ratio objects at compile-time
  
   (C++11) (alias template)
| 2024.06.10 | http://cppreference.com |