table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 
| std::ranges::search_n(3) | C++ Standard Libary | std::ranges::search_n(3) | 
NAME¶
std::ranges::search_n - std::ranges::search_n
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::forward_iterator I, std::sentinel_for<I> S,
  
   class T,
  
   class Pred = ranges::equal_to, class Proj =
  
   std::identity > (since
  
   requires std::indirectly_comparable<I, const T*, Pred, Proj> C++20)
  
   constexpr ranges::subrange<I> (until
  
   search_n( I first, S last, std::iter_difference_t<I> C++26)
  
   count,
  
   const T& value, Pred pred = {}, Proj proj = {}
  
   );
  
   template< std::forward_iterator I, std::sentinel_for<I> S,
  
   class Pred = ranges::equal_to, class Proj =
  
   std::identity,
  
   class T = std::projected_value_t<I, Proj> >
  
   requires std::indirectly_comparable<I, const T*, Pred, Proj> (since
  
   constexpr ranges::subrange<I> C++26)
  
   search_n( I first, S last, std::iter_difference_t<I>
  
   count,
  
   const T& value, Pred pred = {}, Proj proj = {}
  
   ); (1)
  
   template< ranges::forward_range R, class T,
  
   class Pred = ranges::equal_to, class Proj =
  
   std::identity > (since
  
   requires std::indirectly_comparable C++20)
  
   <ranges::iterator_t<R>, const T*, Pred, Proj> (until
  
   constexpr ranges::borrowed_subrange_t<R> C++26)
  
   search_n( R&& r, ranges::range_difference_t<R> count,
  
   const T& value, Pred pred = {}, Proj proj = {}
  
   );
  
   template< ranges::forward_range R, (2)
  
   class Pred = ranges::equal_to, class Proj =
  
   std::identity,
  
   class T =
  
   std::projected_value_t<ranges::iterator_t<R>, Proj> > (since
  
   requires std::indirectly_comparable C++26)
  
   <ranges::iterator_t<R>, const T*, Pred, Proj>
  
   constexpr ranges::borrowed_subrange_t<R>
  
   search_n( R&& r, ranges::range_difference_t<R> count,
  
   const T& value, Pred pred = {}, Proj proj = {}
  
   );
  
   1) Searches the range [first, last) for the first sequence of count elements
    whose
  
   projected values are each equal to the given value according to the binary
    predicate
  
   pred.
  
   2) Same as (1), but uses r as the source range, as if using
    ranges::begin(r) as
  
   first and ranges::end(r) as last.
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first, last - the range of elements to examine (aka haystack)
  
   r - the range of elements to examine (aka haystack)
  
   count - the length of the sequence to search for
  
   value - the value to search for (aka needle)
  
   pred - the binary predicate that compares the projected elements with value
  
   proj - the projection to apply to the elements of the range to examine
Return value¶
 1) Returns std::ranges::subrange object that contains a pair of
    iterators in the
  
   range [first, last) that designate the found subsequence.
  
   If no such subsequence is found, returns std::ranges::subrange{last,
  last}.
  
   If count <= 0, returns std::ranges::subrange{first, first}.
  
   2) Same as (1) but the return type is
    ranges::borrowed_subrange_t<R>.
Complexity¶
 Linear: at most ranges::distance(first, last) applications of the
    predicate and the
  
   projection.
Notes¶
 An implementation can improve efficiency of the search in average
    if the iterators
  
   model std::random_access_iterator.
  
   Feature-test macro Value Std Feature
  
   __cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for
  
   algorithms
Possible implementation¶
 struct search_n_fn
  
   {
  
   template<std::forward_iterator I, std::sentinel_for<I> S,
  
   class Pred = ranges::equal_to, class Proj = std::identity,
  
   class T = std::projected_value_t<I, Proj>>
  
   requires std::indirectly_comparable<I, const T*, Pred, Proj>
  
   constexpr ranges::subrange<I>
  
   operator()(I first, S last, std::iter_difference_t<I> count,
  
   const T& value, Pred pred = {}, Proj proj = {}) const
  
   {
  
   if (count <= 0)
  
   return {first, first};
  
   for (; first != last; ++first)
  
   if (std::invoke(pred, std::invoke(proj, *first), value))
  
   {
  
   I start = first;
  
   std::iter_difference_t<I> n{1};
  
   for (;;)
  
   {
  
   if (n++ == count)
  
   return {start, std::next(first)}; // found
  
   if (++first == last)
  
   return {first, first}; // not found
  
   if (!std::invoke(pred, std::invoke(proj, *first), value))
  
   break; // not equ to value
  
   }
  
   }
  
   return {first, first};
  
   }
  
   template<ranges::forward_range R,
  
   class Pred = ranges::equal_to, class Proj = std::identity,
  
   class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
  
   requires std::indirectly_comparable<ranges::iterator_t<R>, const T*,
    Pred, Proj>
  
   constexpr ranges::borrowed_subrange_t<R>
  
   operator()(R&& r, ranges::range_difference_t<R> count,
  
   const T& value, Pred pred = {}, Proj proj = {}) const
  
   {
  
   return (*this)(ranges::begin(r), ranges::end(r),
  
   std::move(count), value,
  
   std::move(pred), std::move(proj));
  
   }
  
   };
  
   inline constexpr search_n_fn search_n {};
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <cassert>
  
   #include <complex>
  
   #include <iomanip>
  
   #include <iostream>
  
   #include <iterator>
  
   #include <string>
  
   #include <vector>
  
   int main()
  
   {
  
   namespace ranges = std::ranges;
  
   static constexpr auto nums = {1, 2, 2, 3, 4, 1, 2, 2, 2, 1};
  
   constexpr int count{3};
  
   constexpr int value{2};
  
   typedef int count_t, value_t;
  
   constexpr auto result1 = ranges::search_n
  
   (
  
   nums.begin(), nums.end(), count, value
  
   );
  
   static_assert // found
  
   (
  
   result1.size() == count &&
  
   std::distance(nums.begin(), result1.begin()) == 6 &&
  
   std::distance(nums.begin(), result1.end()) == 9
  
   );
  
   constexpr auto result2 = ranges::search_n(nums, count, value);
  
   static_assert // found
  
   (
  
   result2.size() == count &&
  
   std::distance(nums.begin(), result2.begin()) == 6 &&
  
   std::distance(nums.begin(), result2.end()) == 9
  
   );
  
   constexpr auto result3 = ranges::search_n(nums, count, value_t{5});
  
   static_assert // not found
  
   (
  
   result3.size() == 0 &&
  
   result3.begin() == result3.end() &&
  
   result3.end() == nums.end()
  
   );
  
   constexpr auto result4 = ranges::search_n(nums, count_t{0}, value_t{1});
  
   static_assert // not found
  
   (
  
   result4.size() == 0 &&
  
   result4.begin() == result4.end() &&
  
   result4.end() == nums.begin()
  
   );
  
   constexpr char symbol{'B'};
  
   auto to_ascii = [](const int z) -> char { return 'A' + z - 1; };
  
   auto is_equ = [](const char x, const char y) { return x == y; };
  
   std::cout << "Find a sub-sequence " <<
    std::string(count, symbol) << " in the ";
  
   std::ranges::transform(nums, std::ostream_iterator<char>(std::cout,
    ""), to_ascii);
  
   std::cout << '\n';
  
   auto result5 = ranges::search_n(nums, count, symbol, is_equ, to_ascii);
  
   if (not result5.empty())
  
   std::cout << "Found at position "
  
   << ranges::distance(nums.begin(), result5.begin()) << '\n';
  
   std::vector<std::complex<double>> nums2{{4, 2}, {4, 2}, {1, 3}};
  
   #ifdef __cpp_lib_algorithm_default_value_type
  
   auto it = ranges::search_n(nums2, 2, {4, 2});
  
   #else
  
   auto it = ranges::search_n(nums2, 2, std::complex<double>{4, 2});
  
   #endif
  
   assert(it.size() == 2);
  
   }
Output:¶
 Find a sub-sequence BBB in the ABBCDABBBA
  
   Found at position 6
See also¶
 ranges::adjacent_find finds the first two adjacent items that are
    equal (or satisfy
  
   (C++20) a given predicate)
  
   (niebloid)
  
   ranges::find
  
   ranges::find_if
  
   ranges::find_if_not finds the first element satisfying specific criteria
  
   (C++20) (niebloid)
  
   (C++20)
  
   (C++20)
  
   ranges::find_end finds the last sequence of elements in a certain range
  
   (C++20) (niebloid)
  
   ranges::find_first_of searches for any one of a set of elements
  
   (C++20) (niebloid)
  
   ranges::includes returns true if one sequence is a subsequence of another
  
   (C++20) (niebloid)
  
   ranges::mismatch finds the first position where two ranges differ
  
   (C++20) (niebloid)
  
   ranges::search searches for a range of elements
  
   (C++20) (niebloid)
  
   searches a range for a number of consecutive copies of an
  
   search_n element
  
   (function template)
| 2024.06.10 | http://cppreference.com |