table of contents
std::ranges::partition_point(3) | C++ Standard Libary | std::ranges::partition_point(3) |
NAME¶
std::ranges::partition_point - std::ranges::partition_point
Synopsis¶
Defined in header <algorithm>
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> (1)
(since C++20)
Pred >
constexpr I
partition_point( I first, S last, Pred pred, Proj proj = {} );
template< ranges::forward_range R,
class Proj = std::identity,
std::indirect_unary_predicate< (2) (since C++20)
std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexpr ranges::borrowed_iterator_t<R>
partition_point( R&& r, Pred pred, Proj proj = {} );
Examines the partitioned (as if by ranges::partition) range [first, last) or
r and
locates the end of the first partition, that is, the projected element that
does not
satisfy pred or last if all projected elements satisfy pred.
The function-like entities described on this page are niebloids, that is:
* Explicit template argument lists cannot be specified when calling any of
them.
* None of them are visible to argument-dependent lookup.
* When any of them are found by normal unqualified lookup as the name to the
left
of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special
compiler
extensions.
Parameters¶
first, last - iterator-sentinel defining the partially-ordered
range to examine
r - the partially-ordered range to examine
pred - predicate to apply to the projected elements
proj - projection to apply to the elements
Return value¶
The iterator past the end of the first partition within [first,
last) or the
iterator equal to last if all projected elements satisfy pred.
Complexity¶
Given N = ranges::distance(first, last), performs O(log N)
applications of the
predicate pred and projection proj.
However, if sentinels don't model std::sized_sentinel_for<I>, the
number of iterator
increments is O(N).
Notes¶
This algorithm is a more general form of ranges::lower_bound,
which can be expressed
in terms of ranges::partition_point with the predicate [&](auto
const& e) { return
std::invoke(pred, e, value); });.
Example¶
// Run this code
#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
auto print_seq = [](auto rem, auto first, auto last)
{
for (std::cout << rem; first != last; std::cout << *first++
<< ' ') {}
std::cout << '\n';
};
int main()
{
std::array v {1, 2, 3, 4, 5, 6, 7, 8, 9};
auto is_even = [](int i) { return i % 2 == 0; };
std::ranges::partition(v, is_even);
print_seq("After partitioning, v: ", v.cbegin(), v.cend());
const auto pp = std::ranges::partition_point(v, is_even);
const auto i = std::ranges::distance(v.cbegin(), pp);
std::cout << "Partition point is at " << i <<
"; v[" << i << "] = " << *pp <<
'\n';
print_seq("First partition (all even elements): ", v.cbegin(), pp);
print_seq("Second partition (all odd elements): ", pp, v.cend());
}
Possible output:¶
After partitioning, v: 2 4 6 8 5 3 7 1 9
Partition point is at 4; v[4] = 5
First partition (all even elements): 2 4 6 8
Second partition (all odd elements): 5 3 7 1 9
See also¶
ranges::is_sorted checks whether a range is sorted into ascending
order
(C++20) (niebloid)
ranges::lower_bound returns an iterator to the first element not less than
the given
(C++20) value
(niebloid)
partition_point locates the partition point of a partitioned range
(C++11) (function template)
2024.06.10 | http://cppreference.com |