table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::ranges::partition_point(3) | C++ Standard Libary | std::ranges::partition_point(3) | 
NAME¶
std::ranges::partition_point - std::ranges::partition_point
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::forward_iterator I, std::sentinel_for<I> S,
  
   class Proj = std::identity,
  
   std::indirect_unary_predicate<std::projected<I, Proj>> (1)
    (since C++20)
  
   Pred >
  
   constexpr I
  
   partition_point( I first, S last, Pred pred, Proj proj = {} );
  
   template< ranges::forward_range R,
  
   class Proj = std::identity,
  
   std::indirect_unary_predicate< (2) (since C++20)
  
   std::projected<ranges::iterator_t<R>, Proj>> Pred >
  
   constexpr ranges::borrowed_iterator_t<R>
  
   partition_point( R&& r, Pred pred, Proj proj = {} );
  
   Examines the partitioned (as if by ranges::partition) range [first, last) or
    r and
  
   locates the end of the first partition, that is, the projected element that
    does not
  
   satisfy pred or last if all projected elements satisfy pred.
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first, last - iterator-sentinel defining the partially-ordered
    range to examine
  
   r - the partially-ordered range to examine
  
   pred - predicate to apply to the projected elements
  
   proj - projection to apply to the elements
Return value¶
 The iterator past the end of the first partition within [first,
    last) or the
  
   iterator equal to last if all projected elements satisfy pred.
Complexity¶
 Given N = ranges::distance(first, last), performs O(log N)
    applications of the
  
   predicate pred and projection proj.
  
   However, if sentinels don't model std::sized_sentinel_for<I>, the
    number of iterator
  
   increments is O(N).
Notes¶
 This algorithm is a more general form of ranges::lower_bound,
    which can be expressed
  
   in terms of ranges::partition_point with the predicate [&](auto
    const& e) { return
  
   std::invoke(pred, e, value); });.
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <array>
  
   #include <iostream>
  
   #include <iterator>
  
   auto print_seq = [](auto rem, auto first, auto last)
  
   {
  
   for (std::cout << rem; first != last; std::cout << *first++
    << ' ') {}
  
   std::cout << '\n';
  
   };
  
   int main()
  
   {
  
   std::array v {1, 2, 3, 4, 5, 6, 7, 8, 9};
  
   auto is_even = [](int i) { return i % 2 == 0; };
  
   std::ranges::partition(v, is_even);
  
   print_seq("After partitioning, v: ", v.cbegin(), v.cend());
  
   const auto pp = std::ranges::partition_point(v, is_even);
  
   const auto i = std::ranges::distance(v.cbegin(), pp);
  
   std::cout << "Partition point is at " << i <<
    "; v[" << i << "] = " << *pp <<
    '\n';
  
   print_seq("First partition (all even elements): ", v.cbegin(), pp);
  
   print_seq("Second partition (all odd elements): ", pp, v.cend());
  
   }
Possible output:¶
 After partitioning, v: 2 4 6 8 5 3 7 1 9
  
   Partition point is at 4; v[4] = 5
  
   First partition (all even elements): 2 4 6 8
  
   Second partition (all odd elements): 5 3 7 1 9
See also¶
 ranges::is_sorted checks whether a range is sorted into ascending
    order
  
   (C++20) (niebloid)
  
   ranges::lower_bound returns an iterator to the first element not less than
    the given
  
   (C++20) value
  
   (niebloid)
  
   partition_point locates the partition point of a partitioned range
  
   (C++11) (function template)
| 2024.06.10 | http://cppreference.com |