table of contents
std::ranges::max_element(3) | C++ Standard Libary | std::ranges::max_element(3) |
NAME¶
std::ranges::max_element - std::ranges::max_element
Synopsis¶
Defined in header <algorithm>
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class
Proj =
std::identity,
std::indirect_strict_weak_order<std::projected<I, Proj>> Comp
(1) (since
= ranges::less > C++20)
constexpr I
max_element( I first, S last, Comp comp = {}, Proj proj = {} );
template< ranges::forward_range R, class Proj = std::identity,
std::indirect_strict_weak_order<
std::projected<ranges::iterator_t<R>, Proj>> Comp = (2)
(since
ranges::less > C++20)
constexpr ranges::borrowed_iterator_t<R>
max_element( R&& r, Comp comp = {}, Proj proj = {} );
1) Finds the greatest element in the range [first, last).
2) Same as (1), but uses r as the source range, as if using
ranges::begin(r) as
first and ranges::end(r) as last.
The function-like entities described on this page are niebloids, that is:
* Explicit template argument lists cannot be specified when calling any of
them.
* None of them are visible to argument-dependent lookup.
* When any of them are found by normal unqualified lookup as the name to the
left
of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special
compiler
extensions.
Parameters¶
first, last - iterator-sentinel pair denoting the range to
examine
r - the range to examine
comp - comparison to apply to the projected elements
proj - projection to apply to the elements
Return value¶
Iterator to the greatest element in the range [first, last). If
several elements in
the range are equivalent to the greatest element, returns the iterator to the
first
such element. Returns last if the range is empty (i.e. if first == last).
Complexity¶
Exactly max(N - 1, 0) comparisons, where N = ranges::distance(first, last).
Possible implementation¶
struct max_element_fn {
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj
= std::identity,
std::indirect_strict_weak_order<std::projected<I, Proj>> Comp =
ranges::less>
constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
{
if (first == last)
return last;
auto largest = first;
while (++first != last)
if (std::invoke(comp, std::invoke(proj, *largest), std::invoke(proj,
*first)))
largest = first;
return largest;
}
template<ranges::forward_range R, class Proj = std::identity,
std::indirect_strict_weak_order<
std::projected<ranges::iterator_t<R>, Proj>> Comp =
ranges::less>
constexpr ranges::borrowed_iterator_t<R>
operator()(R&& r, Comp comp = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::ref(comp),
std::ref(proj));
} };
inline constexpr max_element_fn max_element;
Example¶
// Run this code
#include <algorithm>
#include <cmath>
#include <iostream>
int main()
{
namespace ranges = std::ranges;
const auto v = {3, 1, -14, 1, 5, 9, -14, 9};
auto result = ranges::max_element(v.begin(), v.end());
std::cout << "Max element at pos " <<
ranges::distance(v.begin(), result) << '\n';
auto abs_compare = [](int a, int b) { return std::abs(a) < std::abs(b); };
result = ranges::max_element(v, abs_compare);
std::cout << "Absolute max element at pos "
<< ranges::distance(v.begin(), result) << '\n';
}
Output:¶
Max element at pos 5
Absolute max element at pos 2
See also¶
ranges::min_element returns the smallest element in a range
(C++20) (niebloid)
ranges::minmax_element returns the smallest and the largest elements in a
range
(C++20) (niebloid)
ranges::max returns the greater of the given values
(C++20) (niebloid)
max_element returns the largest element in a range
(function template)
2024.06.10 | http://cppreference.com |