table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::ranges::is_partitioned(3) | C++ Standard Libary | std::ranges::is_partitioned(3) | 
NAME¶
std::ranges::is_partitioned - std::ranges::is_partitioned
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::input_iterator I, std::sentinel_for<I> S,
  
   class Proj = std::identity,
  
   std::indirect_unary_predicate<std::projected<I, Proj>> (1)
    (since C++20)
  
   Pred >
  
   constexpr bool
  
   is_partitioned( I first, S last, Pred pred, Proj proj = {} );
  
   template< ranges::input_range R, class Proj = std::identity,
  
   std::indirect_unary_predicate<
  
   std::projected<ranges::iterator_t<R>, Proj>> Pred >
    (2) (since C++20)
  
   constexpr bool
  
   is_partitioned( R&& r, Pred pred, Proj proj = {} );
  
   1) Returns true if all elements in the range [first, last) that satisfy the
  
   predicate pred after projection appear before all elements that don't. Also
    returns
  
   true if [first, last) is empty.
  
   2) Same as (1), but uses r as the source range, as if using
    ranges::begin(r) as
  
   first and ranges::end(r) as last.
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first, last - iterator-sentinel pair denoting the range of
    elements to examine
  
   r - the range of elements to examine
  
   pred - predicate to apply to the projected elements
  
   proj - projection to apply to the elements
Return value¶
true if the range [first, last) is empty or is partitioned by pred, false otherwise.
Complexity¶
At most ranges::distance(first, last) applications of pred and proj.
Possible implementation¶
struct is_partitioned_fn {
  
   template<std::input_iterator I, std::sentinel_for<I> S, class Proj =
    std::identity,
  
   std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
  
   constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const
  
   {
  
   for (; first != last; ++first)
  
   if (!std::invoke(pred, std::invoke(proj, *first)))
  
   break;
  
   for (; first != last; ++first)
  
   if (std::invoke(pred, std::invoke(proj, *first)))
  
   return false;
  
   return true;
  
   }
  
   template<ranges::input_range R, class Proj = std::identity,
  
  
    std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>,
    Proj>> Pred>
  
   constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const
  
   {
  
   return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred),
    std::ref(proj));
  
   } };
inline constexpr auto is_partitioned = is_partitioned_fn();
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <array>
  
   #include <iostream>
  
   #include <numeric>
  
   #include <utility>
  
   int main()
  
   {
  
   std::array<int, 9> v;
  
   auto print = [&v](bool o)
  
   {
  
   for (int x : v)
  
   std::cout << x << ' ';
  
   std::cout << (o ? "=> " : "=> not ") <<
    "partitioned\n";
  
   };
  
   auto is_even = [](int i) { return i % 2 == 0; };
  
   std::iota(v.begin(), v.end(), 1); // or std::ranges::iota(v, 1);
  
   print(std::ranges::is_partitioned(v, is_even));
  
   std::ranges::partition(v, is_even);
  
   print(std::ranges::is_partitioned(std::as_const(v), is_even));
  
   std::ranges::reverse(v);
  
   print(std::ranges::is_partitioned(v.cbegin(), v.cend(), is_even));
  
   print(std::ranges::is_partitioned(v.crbegin(), v.crend(), is_even));
  
   }
Output:¶
 1 2 3 4 5 6 7 8 9 => not partitioned
  
   2 4 6 8 5 3 7 1 9 => partitioned
  
   9 1 7 3 5 8 6 4 2 => not partitioned
  
   9 1 7 3 5 8 6 4 2 => partitioned
See also¶
 ranges::partition divides a range of elements into two groups
  
   (C++20) (niebloid)
  
   ranges::partition_point locates the partition point of a partitioned range
  
   (C++20) (niebloid)
  
   is_partitioned determines if the range is partitioned by the given
  
   (C++11) predicate
  
   (function template)
| 2024.06.10 | http://cppreference.com |