table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::ranges::equal(3) | C++ Standard Libary | std::ranges::equal(3) | 
NAME¶
std::ranges::equal - std::ranges::equal
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::input_iterator I1, std::sentinel_for<I1> S1,
  
   std::input_iterator I2, std::sentinel_for<I2> S2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity > (1)
    (since
  
   requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> C++20)
  
   constexpr bool
  
   equal( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
  
   Proj1 proj1 = {}, Proj2 proj2 = {} );
  
   template< ranges::input_range R1, ranges::input_range R2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity >
  
   requires std::indirectly_comparable<ranges::iterator_t<R1>, (since
  
   ranges::iterator_t<R2>, (2) C++20)
  
   Pred, Proj1, Proj2>
  
   constexpr bool
  
   equal( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {},
    Proj2
  
   proj2 = {} );
  
   1) Returns true if the projected values of the range [first1, last1) are
    equal to
  
   the projected values of the range [first2, last2), and false otherwise.
  
   2) Same as (1), but uses r as the source range, as if using
    ranges::begin(r) as
  
   first and ranges::end(r) as last.
  
   Two ranges are considered equal if they have the same number of elements and
    every
  
   pair of corresponding projected elements satisfies pred. That is,
    std::invoke(pred,
  
   std::invoke(proj1, *first1), std::invoke(proj2, *first2)) returns true for
    all pairs
  
   of corresponding elements in both ranges.
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first1, last1 - an iterator-sentinel pair denoting the first
    range of the elements
  
   to compare
  
   r1 - the first range of the elements to compare
  
   first2, last2 - an iterator-sentinel pair denoting the second range of the
    elements
  
   to compare
  
   r2 - the second range of the elements to compare
  
   pred - predicate to apply to the projected elements
  
   proj1 - projection to apply to the first range of elements
  
   proj2 - projection to apply to the second range of elements
Return value¶
 If the length of the range [first1, last1) does not equal the
    length of the range
  
   [first2, last2), returns false.
  
   If the elements in the two ranges are equal after projection, returns
  true.
  
   Otherwise returns false.
Notes¶
 ranges::equal should not be used to compare the ranges formed by
    the iterators from
  
   std::unordered_set, std::unordered_multiset, std::unordered_map, or
  
   std::unordered_multimap because the order in which the elements are stored in
    those
  
   containers may be different even if the two containers store the same
    elements.
  
   When comparing entire containers for equality, operator== for the
    corresponding
  
   container are usually preferred.
Complexity¶
 At most min(last1 - first1, last2 - first2) applications of the
    predicate and
  
   corresponding projections.
  
   However, if S1 and S2 both model std::sized_sentinel_for their respective
    iterators,
  
   and last1 - first1 != last2 - first2 then no applications of the predicate
    are made
  
   (size mismatch is detected without looking at any elements).
Possible implementation¶
struct equal_fn {
  
   template<std::input_iterator I1, std::sentinel_for<I1> S1,
  
   std::input_iterator I2, std::sentinel_for<I2> S2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity>
  
   requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  
   constexpr bool
  
   operator()(I1 first1, S1 last1, I2 first2, S2 last2,
  
   Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const
  
   {
  
   if constexpr (std::sized_sentinel_for<S1, I1> and
    std::sized_sentinel_for<S2, I2>)
  
   if (std::ranges::distance(first1, last1) != std::ranges::distance(first2,
    last2))
  
   return false;
  
   for (; first1 != last1; ++first1, (void)++first2)
  
   if (!std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2,
    *first2)))
  
   return false;
  
   return true;
  
   }
  
   template<ranges::input_range R1, ranges::input_range R2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity>
  
   requires std::indirectly_comparable<ranges::iterator_t<R1>,
    ranges::iterator_t<R2>,
  
   Pred, Proj1, Proj2>
  
   constexpr bool
  
   operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 =
    {}, Proj2 proj2 = {}) const
  
   {
  
   return (*this)(ranges::begin(r1), ranges::end(r1),
  
   ranges::begin(r2), ranges::end(r2),
  
   std::ref(pred), std::ref(proj1), std::ref(proj2));
  
   } };
inline constexpr equal_fn equal;
Example¶
The following code uses ranges::equal to test if a string is a palindrome.
// Run this code
  
   #include <algorithm>
  
   #include <iomanip>
  
   #include <iostream>
  
   #include <ranges>
  
   #include <string_view>
  
   constexpr bool is_palindrome(const std::string_view s)
  
   {
  
   namespace views = std::views;
  
   auto forward = s | views::take(s.size() / 2);
  
   auto backward = s | views::reverse | views::take(s.size() / 2);
  
   return std::ranges::equal(forward, backward);
  
   }
  
   void test(const std::string_view s)
  
   {
  
   std::cout << std::quoted(s) << " is "
  
   << (is_palindrome(s) ? "" : "not ")
  
   << "a palindrome\n";
  
   }
  
   int main()
  
   {
  
   test("radar");
  
   test("hello");
  
   static_assert(is_palindrome("ABBA") and not
    is_palindrome("AC/DC"));
  
   }
Output:¶
 "radar" is a palindrome
  
   "hello" is not a palindrome
See also¶
 ranges::find
  
   ranges::find_if
  
   ranges::find_if_not finds the first element satisfying specific criteria
  
   (C++20) (niebloid)
  
   (C++20)
  
   (C++20)
  
   ranges::lexicographical_compare returns true if one range is
    lexicographically less
  
   (C++20) than another
  
   (niebloid)
  
   ranges::mismatch finds the first position where two ranges differ
  
   (C++20) (niebloid)
  
   ranges::search searches for a range of elements
  
   (C++20) (niebloid)
  
   ranges::equal_range returns range of elements matching a specific key
  
   (C++20) (niebloid)
  
   equal_to function object implementing x == y
  
   (class template)
  
   equal determines if two sets of elements are the same
  
   (function template)
| 2024.06.10 | http://cppreference.com |