Scroll to navigation

std::ranges::cartesian_product_view::size(3) C++ Standard Libary std::ranges::cartesian_product_view::size(3)

NAME

std::ranges::cartesian_product_view::size - std::ranges::cartesian_product_view::size

Synopsis


constexpr /* see description */ size() (1) (since C++23)
requires __cartesian_product_is_sized<First, Vs...>;
constexpr /* see description */ size() const
requires __cartesian_product_is_sized<const First, const (2) (since C++23)
Vs...>;


Returns the number of elements. The return type is an implementation-defined
unsigned-integer-like type U.


Let bases_ be the underlying tuple of views, and prod be the product of the sizes of
all the ranges in bases_.


1,2) Returns prod. The behavior is undefined if prod cannot be represented by the
return type U.


Equivalent to:


return [&]<std::size_t... Is>(std::index_sequence<Is...>)
{
auto prod = static_cast<U>(1);
prod = (static_cast<U>(ranges::size(std::get<Is>(bases_))) * ...);
return prod;
}
(std::make_index_sequence<1U + sizeof...(Vs)>{});

Parameters


(none)

Return value


The number of elements, that is, the product of the sizes of all the underlying
ranges.

Notes


The return type is the smallest unsigned-integer-like type that is sufficiently wide
to store the product of the maximum sizes of all the underlying ranges, if such a
type exists.

Example

// Run this code


#include <ranges>


int main()
{
constexpr static auto w = {1};
constexpr static auto x = {2, 3};
constexpr static auto y = {4, 5, 6};
constexpr static auto z = {7, 8, 9, 10, 11, 12, 13};
constexpr auto v = std::ranges::cartesian_product_view(w, x, y, z);
static_assert(v.size() == w.size() * x.size() * y.size() * z.size() and v.size() == 42);
}

See also


ranges::size returns an integer equal to the size of a range
(C++20) (customization point object)
ranges::ssize returns a signed integer equal to the size of a range
(C++20) (customization point object)

2024.06.10 http://cppreference.com