table of contents
std::proj(std::complex)(3) | C++ Standard Libary | std::proj(std::complex)(3) |
NAME¶
std::proj(std::complex) - std::proj(std::complex)
Synopsis¶
Defined in header <complex>
template< class T > (1) (since C++11)
std::complex<T> proj( const std::complex<T>& z );
Additional overloads (since C++11)
Defined in header <complex>
std::complex<float> proj( float f );
std::complex<double> proj( double f ); (until C++23)
std::complex<long double> proj( long double f ); (A)
template< class FloatingPoint > (since C++23)
std::complex<FloatingPoint> proj( FloatingPoint f );
template< class Integer > (B)
std::complex<double> proj( Integer i );
1) Returns the projection of the complex number z onto the Riemann sphere.
For most z, std::proj(z) == z, but all complex infinities, even the numbers
where
one component is infinite and the other is NaN, become positive real
infinity,
(INFINITY, 0.0) or (INFINITY, -0.0). The sign of the imaginary (zero)
component is
the sign of std::imag(z).
A,B) Additional overloads are provided for all integer and floating-point
types,
which are treated as complex numbers with positive zero imaginary
component.
Parameters¶
z - complex value
f - floating-point value
i - integer value
Return value¶
1) The projection of z onto the Riemann sphere.
A) The projection of std::complex(f) onto the Riemann sphere.
B) The projection of std::complex<double>(i) onto the Riemann
sphere.
Notes¶
The proj function helps model the Riemann sphere by mapping all
infinities to one
(give or take the sign of the imaginary zero), and should be used just before
any
operation, especially comparisons, that might give spurious results for any
of the
other infinities.
The additional overloads are not required to be provided exactly as (A,B).
They only
need to be sufficient to ensure that for their argument num:
* If num has a
standard
(until C++23) floating-point type T, then std::proj(num) has the same effect
as
std::proj(std::complex<T>(num)).
* Otherwise, if num has an integer type, then std::proj(num) has the same
effect
as std::proj(std::complex<double>(num)).
Example¶
// Run this code
#include <complex>
#include <iostream>
int main()
{
std::complex<double> c1(1, 2);
std::cout << "proj" << c1 << " = "
<< std::proj(c1) << '\n';
std::complex<double> c2(INFINITY, -1);
std::cout << "proj" << c2 << " = "
<< std::proj(c2) << '\n';
std::complex<double> c3(0, -INFINITY);
std::cout << "proj" << c3 << " = "
<< std::proj(c3) << '\n';
}
Output:¶
proj(1,2) = (1,2)
proj(inf,-1) = (inf,-0)
proj(0,-inf) = (inf,-0)
See also¶
abs(std::complex) returns the magnitude of a complex number
(function template)
norm returns the squared magnitude
(function template)
polar constructs a complex number from magnitude and phase angle
(function template)
C documentation for
cproj
2024.06.10 | http://cppreference.com |