table of contents
std::numeric_limits::tinyness_before(3) | C++ Standard Libary | std::numeric_limits::tinyness_before(3) |
NAME¶
std::numeric_limits::tinyness_before - std::numeric_limits::tinyness_before
Synopsis¶
static const bool tinyness_before; (until C++11)
static constexpr bool tinyness_before; (since C++11)
The value of std::numeric_limits<T>::tinyness_before is true for all
floating-point
types T that test results of floating-point expressions for underflow before
rounding.
Standard specializations¶
T value of std::numeric_limits<T>::tinyness_before
/* non-specialized */ false
bool false
char false
signed char false
unsigned char false
wchar_t false
char8_t (since C++20) false
char16_t (since C++11) false
char32_t (since C++11) false
short false
unsigned short false
int false
unsigned int false
long false
unsigned long false
long long (since C++11) false
unsigned long long (since C++11) false
float implementation-defined
double implementation-defined
long double implementation-defined
Notes¶
Standard-compliant IEEE 754 floating-point implementations are
required to detect
the floating-point underflow, and have two alternative situations where this
can be
done
1. Underflow occurs (and FE_UNDERFLOW may be raised) if a computation
produces a
result whose absolute value, computed as though both the exponent range and
the
precision were unbounded, is smaller than
std::numeric_limits<T>::min(). Such
implementation detects tinyness before rounding (e.g. UltraSparc, POWER).
2. Underflow occurs (and FE_UNDERFLOW may be raised) if after the rounding of
the
result to the target floating-point type (that is, rounding to
std::numeric_limits<T>::digits bits), the result's absolute value is
smaller
than std::numeric_limits<T>::min(). Formally, the absolute value of a
nonzero
result computed as though the exponent range were unbounded is smaller than
std::numeric_limits<T>::min(). Such implementation detects tinyness
after
rounding (e.g. SuperSparc).
Example¶
Multiplication of the largest subnormal number by the number one
machine epsilon
greater than 1.0 gives the tiny value 0x0.fffffffffffff8p-1022 before
rounding, but
normal value 1p-1022 after rounding. The implementation used to execute this
test
(IBM Power7) detects tinyness before rounding.
// Run this code
#include <iostream>
#include <limits>
#include <cmath>
#include <cfenv>
int main()
{
std::cout << "Tinyness before: " << std::boolalpha
<< std::numeric_limits<double>::tinyness_before <<
'\n';
double denorm_max = std::nextafter(std::numeric_limits<double>::min(),
0);
double multiplier = 1 + std::numeric_limits<double>::epsilon();
std::feclearexcept(FE_ALL_EXCEPT);
double result = denorm_max * multiplier; // Underflow only if
tinyness_before
if (std::fetestexcept(FE_UNDERFLOW))
std::cout << "Underflow detected\n";
std::cout << std::hexfloat << denorm_max << " x "
<< multiplier << " = "
<< result << '\n';
}
Possible output:¶
Tinyness before: true
Underflow detected
0xf.ffffffffffffp-1030 x 0x1.0000000000001p+0 = 0x1p-1022
See also¶
has_denorm_loss identifies the floating-point types that detect
loss of precision as
[static] denormalization loss rather than inexact result
(public static member constant)
has_denorm identifies the denormalization style used by the floating-point
type
[static] (public static member constant)
2024.06.10 | http://cppreference.com |