table of contents
std::log10(std::complex)(3) | C++ Standard Libary | std::log10(std::complex)(3) |
NAME¶
std::log10(std::complex) - std::log10(std::complex)
Synopsis¶
Defined in header <complex>
template< class T >
std::complex<T> log10( const std::complex<T>& z );
Computes complex common (base 10) logarithm of a complex value z with a
branch cut
along the negative real axis.
The behavior of this function is equivalent to std::log(z) /
std::log(T(10)).
Parameters¶
z - complex value
Return value¶
Complex common logarithm of z.
Example¶
// Run this code
#include <cmath>
#include <complex>
#include <iostream>
int main()
{
std::complex<double> z(0.0, 1.0); // r = 0, θ = pi / 2
std::cout << "2 * log10" << z << " = "
<< 2.0 * std::log10(z) << '\n';
std::complex<double> z2(sqrt(2.0) / 2, sqrt(2.0) / 2); // r = 1,
θ = pi / 4
std::cout << "4 * log10" << z2 << " = "
<< 4.0 * std::log10(z2) << '\n';
std::complex<double> z3(-100.0, 0.0); // r = 100, θ = pi
std::cout << "log10" << z3 << " = "
<< std::log10(z3) << '\n';
std::complex<double> z4(-100.0, -0.0); // the other side of the cut
std::cout << "log10" << z4 << " = "
<< std::log10(z4) << " "
"(the other side of the cut)\n"
"(note: pi / log(10) = " << std::acos(-1.0) / std::log(10.0)
<< ")\n";
}
Possible output:¶
2 * log10(0,1) = (0,1.36438)
4 * log10(0.707107,0.707107) = (0,1.36438)
log10(-100,0) = (2,1.36438)
log10(-100,-0) = (2,-1.36438) (the other side of the cut)
(note: pi / log(10) = 1.36438)
See also¶
complex natural logarithm with the branch cuts along the
log(std::complex) negative real axis
(function template)
log10
log10f computes common (base 10) logarithm
log10l (\({\small\log_{10}{x}}\)log[10](x))
(C++11) (function)
(C++11)
log10(std::valarray) applies the function std::log10 to each element of
valarray
(function template)
2024.06.10 | http://cppreference.com |