Scroll to navigation

std::future::get(3) C++ Standard Libary std::future::get(3)

NAME

std::future::get - std::future::get

Synopsis


T get(); (1) (member only of generic future template)
(since C++11)
T& get(); (2) (member only of future<T&> template specialization)
(since C++11)
void get(); (3) (member only of future<void> template specialization)
(since C++11)


The get member function waits until the future has a valid result and (depending on
which template is used) retrieves it. It effectively calls wait() in order to wait
for the result.


The generic template and two template specializations each contain a single version
of get. The three versions of get differ only in the return type.


The behavior is undefined if valid() is false before the call to this function.


Any shared state is released. valid() is false after a call to this member function.

Parameters


(none)

Return value


1) The value v stored in the shared state, as std::move(v).
2) The reference stored as value in the shared state.
3) Nothing.

Exceptions


If an exception was stored in the shared state referenced by the future (e.g. via a
call to std::promise::set_exception()) then that exception will be thrown.

Notes


The implementations are encouraged to detect the case when valid() is false before
the call and throw a std::future_error with an error condition of
std::future_errc::no_state.

Example

// Run this code


#include <thread>
#include <future>
#include <iostream>
#include <string>
#include <chrono>


std::string time() {
static auto start = std::chrono::steady_clock::now();
std::chrono::duration<double> d = std::chrono::steady_clock::now() - start;
return "[" + std::to_string(d.count()) + "s]";
}
int main() {
using namespace std::chrono_literals;
{
std::cout << time() << " launching thread\n";
std::future<int> f = std::async(std::launch::async, []{
std::this_thread::sleep_for(1s);
return 7;
});
std::cout << time() << " waiting for the future, f.valid() == "
<< f.valid() << "\n";
int n = f.get();
std::cout << time() << " future.get() returned with " << n << ". f.valid() = "
<< f.valid() << '\n';
}


{
std::cout << time() << " launching thread\n";
std::future<int> f = std::async(std::launch::async, []{
std::this_thread::sleep_for(1s);
return true ? throw std::runtime_error("7") : 7;
});
std::cout << time() << " waiting for the future, f.valid() == "
<< f.valid() << "\n";
try {
int n = f.get();
std::cout << time() << " future.get() returned with " << n
<< " f.valid() = " << f.valid() << '\n';
} catch(const std::exception& e) {
std::cout << time() << " caught exception " << e.what()
<< ", f.valid() == " << f.valid() << "\n";
}
}
}

Possible output:


[0.000004s] launching thread
[0.000461s] waiting for the future, f.valid() == 1
[1.001156s] future.get() returned with 7. f.valid() = 0
[1.001192s] launching thread
[1.001275s] waiting for the future, f.valid() == 1
[2.002356s] caught exception 7, f.valid() == 0

See also


valid checks if the future has a shared state
(public member function)

2022.07.31 http://cppreference.com