Scroll to navigation

std::exp,std::expf,std::expl(3) C++ Standard Libary std::exp,std::expf,std::expl(3)

NAME

std::exp,std::expf,std::expl - std::exp,std::expf,std::expl

Synopsis


Defined in header <cmath>
float exp ( float num );


double exp ( double num ); (until C++23)


long double exp ( long double num );
/* floating-point-type */ (since C++23)
exp ( /* floating-point-type */ num ); (constexpr since C++26)
float expf( float num ); (1) (2) (since C++11)
(constexpr since C++26)
long double expl( long double num ); (3) (since C++11)
(constexpr since C++26)
Additional overloads (since C++11)
Defined in header <cmath>
template< class Integer > (A) (constexpr since C++26)
double exp ( Integer num );


1-3) Computes e (Euler's number, 2.7182818...) raised to the given power num.
The library provides overloads of std::exp for all cv-unqualified floating-point
types as the type of the parameter.
(since C++23)


A) Additional overloads are provided for all integer types, which are (since C++11)
treated as double.

Parameters


num - floating-point or integer value

Return value


If no errors occur, the base-e exponential of num (enum
) is returned.


If a range error occurs due to overflow, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is
returned.


If a range error occurs due to underflow, the correct result (after rounding) is
returned.

Error handling


Errors are reported as specified in math_errhandling.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If the argument is ±0, 1 is returned.
* If the argument is -∞, +0 is returned.
* If the argument is +∞, +∞ is returned.
* If the argument is NaN, NaN is returned.

Notes


For IEEE-compatible type double, overflow is guaranteed if 709.8 < num, and
underflow is guaranteed if num < -708.4.


The additional overloads are not required to be provided exactly as (A). They only
need to be sufficient to ensure that for their argument num of integer type,
std::exp(num) has the same effect as std::exp(static_cast<double>(num)).

Example

// Run this code


#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <numbers>


// #pragma STDC FENV_ACCESS ON


consteval double approx_e()
{
long double e{1.0};
for (auto fac{1ull}, n{1llu}; n != 18; ++n, fac *= n)
e += 1.0 / fac;
return e;
}


int main()
{
std::cout << std::setprecision(16)
<< "exp(1) = e¹ = " << std::exp(1) << '\n'
<< "numbers::e = " << std::numbers::e << '\n'
<< "approx_e = " << approx_e() << '\n'
<< "FV of $100, continuously compounded at 3% for 1 year = "
<< std::setprecision(6) << 100 * std::exp(0.03) << '\n';


// special values
std::cout << "exp(-0) = " << std::exp(-0.0) << '\n'
<< "exp(-Inf) = " << std::exp(-INFINITY) << '\n';


// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);


std::cout << "exp(710) = " << std::exp(710) << '\n';


if (errno == ERANGE)
std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n';
if (std::fetestexcept(FE_OVERFLOW))
std::cout << " FE_OVERFLOW raised\n";
}

Possible output:


exp(1) = e¹ = 2.718281828459045
numbers::e = 2.718281828459045
approx_e = 2.718281828459045
FV of $100, continuously compounded at 3% for 1 year = 103.045
exp(-0) = 1
exp(-Inf) = 0
exp(710) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raised

See also


exp2
exp2f
exp2l returns 2 raised to the given power (\({\small 2^x}\)2^x)
(C++11) (function)
(C++11)
(C++11)
expm1
expm1f returns e raised to the given power, minus one (\({\small
expm1l e^x-1}\)e^x-1)
(C++11) (function)
(C++11)
(C++11)
log
logf computes natural (base e) logarithm (\({\small\ln{x}}\)ln(x))
logl (function)
(C++11)
(C++11)
exp(std::complex) complex base e exponential
(function template)
exp(std::valarray) applies the function std::exp to each element of valarray
(function template)
C documentation for
exp

2024.06.10 http://cppreference.com