Scroll to navigation

std::coroutine_traits(3) C++ Standard Libary std::coroutine_traits(3)

NAME

std::coroutine_traits - std::coroutine_traits

Synopsis


Defined in header <coroutine>
template< class R, class... Args > (since C++20)
struct coroutine_traits;


Determines the promise type from the return type and parameter types of a coroutine.
The standard library implementation provides a publicly accessible member type
promise_type same as R::promise_type if the qualified-id is valid and denotes a
type. Otherwise, it has no such member.


Program-defined specializations of coroutine_traits must define a publicly
accessible nested type promise_type, otherwise the program is ill-formed.

Template parameters


R - return type of the coroutine
Args - parameter types of the coroutine, including the implicit object parameter if
the coroutine is a non-static member function


Nested types


Name Definition
promise_type R::promise_type if it is valid, or provided by program-defined
specializations

Possible implementation


namespace detail {
template<class, class...>
struct coroutine_traits_base {};


template<class R, class... Args>
requires requires { typename R::promise_type; }
struct coroutine_traits_base <R, Args...>
{
using promise_type = R::promise_type;
};
}


template<class R, class... Args>
struct coroutine_traits : detail::coroutine_traits_base<R, Args...> {};

Notes


If the coroutine is a non-static member function, then the first type in Args... is
the type of the implicit object parameter, and the rest are parameter types of the
function (if any).


If std::coroutine_traits<R, Args...>::promise_type does not exist or is not a class
type, the corresponding coroutine definition is ill-formed.


Users may define explicit or partial specializations of coroutine_traits dependent
on program-defined types to avoid modification to return types.

Example

// Run this code


#include <chrono>
#include <coroutine>
#include <exception>
#include <future>
#include <iostream>
#include <thread>
#include <type_traits>


// A program-defined type on which the coroutine_traits specializations below depend
struct as_coroutine {};


// Enable the use of std::future<T> as a coroutine type
// by using a std::promise<T> as the promise type.
template<typename T, typename... Args>
requires(!std::is_void_v<T> && !std::is_reference_v<T>)
struct std::coroutine_traits<std::future<T>, as_coroutine, Args...>
{
struct promise_type : std::promise<T>
{
std::future<T> get_return_object() noexcept
{
return this->get_future();
}


std::suspend_never initial_suspend() const noexcept { return {}; }
std::suspend_never final_suspend() const noexcept { return {}; }


void return_value(const T& value)
noexcept(std::is_nothrow_copy_constructible_v<T>)
{
this->set_value(value);
}


void return_value(T&& value) noexcept(std::is_nothrow_move_constructible_v<T>)
{
this->set_value(std::move(value));
}


void unhandled_exception() noexcept
{
this->set_exception(std::current_exception());
}
};
};


// Same for std::future<void>.
template<typename... Args>
struct std::coroutine_traits<std::future<void>, as_coroutine, Args...>
{
struct promise_type : std::promise<void>
{
std::future<void> get_return_object() noexcept
{
return this->get_future();
}


std::suspend_never initial_suspend() const noexcept { return {}; }
std::suspend_never final_suspend() const noexcept { return {}; }


void return_void() noexcept
{
this->set_value();
}


void unhandled_exception() noexcept
{
this->set_exception(std::current_exception());
}
};
};


// Allow co_await'ing std::future<T> and std::future<void>
// by naively spawning a new thread for each co_await.
template<typename T>
auto operator co_await(std::future<T> future) noexcept
requires(!std::is_reference_v<T>)
{
struct awaiter : std::future<T>
{
bool await_ready() const noexcept
{
using namespace std::chrono_literals;
return this->wait_for(0s) != std::future_status::timeout;
}


void await_suspend(std::coroutine_handle<> cont) const
{
std::thread([this, cont]
{
this->wait();
cont();
}).detach();
}


T await_resume() { return this->get(); }
};


return awaiter { std::move(future) };
}


// Utilize the infrastructure we have established.
std::future<int> compute(as_coroutine)
{
int a = co_await std::async([] { return 6; });
int b = co_await std::async([] { return 7; });
co_return a * b;
}


std::future<void> fail(as_coroutine)
{
throw std::runtime_error("bleah");
co_return;
}


int main()
{
std::cout << compute({}).get() << '\n';


try
{
fail({}).get();
}
catch (const std::runtime_error& e)
{
std::cout << "error: " << e.what() << '\n';
}
}

Output:


42
error: bleah

2024.06.10 http://cppreference.com