table of contents
std::coroutine_traits(3) | C++ Standard Libary | std::coroutine_traits(3) |
NAME¶
std::coroutine_traits - std::coroutine_traits
Synopsis¶
Defined in header <coroutine>
template< class R, class... Args > (since C++20)
struct coroutine_traits;
Determines the promise type from the return type and parameter types of a
coroutine.
The standard library implementation provides a publicly accessible member
type
promise_type same as R::promise_type if the qualified-id is valid and denotes
a
type. Otherwise, it has no such member.
Program-defined specializations of coroutine_traits must define a publicly
accessible nested type promise_type, otherwise the program is ill-formed.
Template parameters¶
R - return type of the coroutine
Args - parameter types of the coroutine, including the implicit object
parameter if
the coroutine is a non-static member function
Nested types
Name Definition
promise_type R::promise_type if it is valid, or provided by program-defined
specializations
Possible implementation¶
namespace detail {
template<class, class...>
struct coroutine_traits_base {};
template<class R, class... Args>
requires requires { typename R::promise_type; }
struct coroutine_traits_base <R, Args...>
{
using promise_type = R::promise_type;
};
}
template<class R, class... Args>
struct coroutine_traits : detail::coroutine_traits_base<R, Args...>
{};
Notes¶
If the coroutine is a non-static member function, then the first
type in Args... is
the type of the implicit object parameter, and the rest are parameter types
of the
function (if any).
If std::coroutine_traits<R, Args...>::promise_type does not exist or is
not a class
type, the corresponding coroutine definition is ill-formed.
Users may define explicit or partial specializations of coroutine_traits
dependent
on program-defined types to avoid modification to return types.
Example¶
// Run this code
#include <chrono>
#include <coroutine>
#include <exception>
#include <future>
#include <iostream>
#include <thread>
#include <type_traits>
// A program-defined type on which the coroutine_traits specializations below
depend
struct as_coroutine {};
// Enable the use of std::future<T> as a coroutine type
// by using a std::promise<T> as the promise type.
template<typename T, typename... Args>
requires(!std::is_void_v<T> && !std::is_reference_v<T>)
struct std::coroutine_traits<std::future<T>, as_coroutine,
Args...>
{
struct promise_type : std::promise<T>
{
std::future<T> get_return_object() noexcept
{
return this->get_future();
}
std::suspend_never initial_suspend() const noexcept { return {}; }
std::suspend_never final_suspend() const noexcept { return {}; }
void return_value(const T& value)
noexcept(std::is_nothrow_copy_constructible_v<T>)
{
this->set_value(value);
}
void return_value(T&& value)
noexcept(std::is_nothrow_move_constructible_v<T>)
{
this->set_value(std::move(value));
}
void unhandled_exception() noexcept
{
this->set_exception(std::current_exception());
}
};
};
// Same for std::future<void>.
template<typename... Args>
struct std::coroutine_traits<std::future<void>, as_coroutine,
Args...>
{
struct promise_type : std::promise<void>
{
std::future<void> get_return_object() noexcept
{
return this->get_future();
}
std::suspend_never initial_suspend() const noexcept { return {}; }
std::suspend_never final_suspend() const noexcept { return {}; }
void return_void() noexcept
{
this->set_value();
}
void unhandled_exception() noexcept
{
this->set_exception(std::current_exception());
}
};
};
// Allow co_await'ing std::future<T> and std::future<void>
// by naively spawning a new thread for each co_await.
template<typename T>
auto operator co_await(std::future<T> future) noexcept
requires(!std::is_reference_v<T>)
{
struct awaiter : std::future<T>
{
bool await_ready() const noexcept
{
using namespace std::chrono_literals;
return this->wait_for(0s) != std::future_status::timeout;
}
void await_suspend(std::coroutine_handle<> cont) const
{
std::thread([this, cont]
{
this->wait();
cont();
}).detach();
}
T await_resume() { return this->get(); }
};
return awaiter { std::move(future) };
}
// Utilize the infrastructure we have established.
std::future<int> compute(as_coroutine)
{
int a = co_await std::async([] { return 6; });
int b = co_await std::async([] { return 7; });
co_return a * b;
}
std::future<void> fail(as_coroutine)
{
throw std::runtime_error("bleah");
co_return;
}
int main()
{
std::cout << compute({}).get() << '\n';
try
{
fail({}).get();
}
catch (const std::runtime_error& e)
{
std::cout << "error: " << e.what() << '\n';
}
}
Output:¶
42
error: bleah
2024.06.10 | http://cppreference.com |