std::bernoulli_distribution(3) | C++ Standard Libary | std::bernoulli_distribution(3) |
NAME¶
std::bernoulli_distribution - std::bernoulli_distribution
Synopsis¶
Defined in header <random>
class bernoulli_distribution; (since C++11)
Produces random boolean values, according to the discrete probability
function. The
probability of true is
P(b|p) =⎧
⎨
⎩p, if b is true
1 − p, if b is false
std::bernoulli_distribution satisfies RandomNumberDistribution.
Member types¶
Member type Definition
result_type (C++11) bool
param_type (C++11) the type of the parameter set, see
RandomNumberDistribution.
Member functions¶
constructor constructs new distribution
(C++11) (public member function)
reset resets the internal state of the distribution
(C++11) (public member function)
Generation¶
operator() generates the next random number in the distribution
(C++11) (public member function)
Characteristics¶
p returns the p distribution parameter (probability of generating
true)
(C++11) (public member function)
param gets or sets the distribution parameter object
(C++11) (public member function)
min returns the minimum potentially generated value
(C++11) (public member function)
max returns the maximum potentially generated value
(C++11) (public member function)
Non-member functions¶
operator==
operator!= compares two distribution objects
(C++11) (function)
(C++11)(removed in C++20)
operator<< performs stream input and output on pseudo-random number
operator>> distribution
(C++11) (function template)
Example¶
// Run this code
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <string>
int main()
{
std::random_device rd;
std::mt19937 gen(rd());
// give "true" 1/4 of the time
// give "false" 3/4 of the time
std::bernoulli_distribution d(0.25);
std::map<bool, int> hist;
for (int n = 0; n < 10000; ++n)
++hist[d(gen)];
std::cout << std::boolalpha;
for (auto const& [key, value] : hist)
std::cout << std::setw(5) << key << ' '
<< std::string(value / 500, '*') << '\n';
}
Possible output:¶
false ***************
true ****
External links¶
Weisstein, Eric W. "Bernoulli Distribution." From
MathWorld — A Wolfram Web
Resource.
2024.06.10 | http://cppreference.com |