table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::acos(std::complex)(3) | C++ Standard Libary | std::acos(std::complex)(3) | 
NAME¶
std::acos(std::complex) - std::acos(std::complex)
Synopsis¶
 Defined in header <complex>
  
   template< class T > (since C++11)
  
   complex<T> acos( const complex<T>& z );
  
   Computes complex arc cosine of a complex value z. Branch cuts exist outside
    the
  
   interval [−1, +1] along the real axis.
Parameters¶
z - complex value
Return value¶
 If no errors occur, complex arc cosine of z is returned, in the
    range of a strip
  
   unbounded along the imaginary axis and in the interval [0, +π] along
    the real axis.
  
   Error handling and special values
  
   Errors are reported consistent with math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic,
  
   * std::acos(std::conj(z)) == std::conj(std::acos(z))
  
   * If z is (±0,+0), the result is (π/2,-0)
  
   * If z is (±0,NaN), the result is (π/2,NaN)
  
   * If z is (x,+∞) (for any finite x), the result is
    (π/2,-∞)
  
   * If z is (x,NaN) (for any nonzero finite x), the result is (NaN,NaN) and
  
   FE_INVALID may be raised.
  
   * If z is (-∞,y) (for any positive finite y), the result is
    (π,-∞)
  
   * If z is (+∞,y) (for any positive finite y), the result is
    (+0,-∞)
  
   * If z is (-∞,+∞), the result is (3π/4,-∞)
  
   * If z is (+∞,+∞), the result is (π/4,-∞)
  
   * If z is (±∞,NaN), the result is (NaN,±∞) (the
    sign of the imaginary part is
  
   unspecified)
  
   * If z is (NaN,y) (for any finite y), the result is (NaN,NaN) and FE_INVALID
    may
  
   be raised
  
   * If z is (NaN,+∞), the result is (NaN,-∞)
  
   * If z is (NaN,NaN), the result is (NaN,NaN)
Notes¶
 Inverse cosine (or arc cosine) is a multivalued function and
    requires a branch cut
  
   on the complex plane. The branch cut is conventionally placed at the line
    segments
  
   (-∞,-1) and (1,∞) of the real axis.
  
   The mathematical definition of the principal value of arc cosine is acos z
  =
  
   1
  
   2
  
   π + iln(iz +
  
   √
  
   1-z2
  
   ).
  
   For any z, acos(z) = π - acos(-z).
Example¶
// Run this code
  
   #include <cmath>
  
   #include <complex>
  
   #include <iostream>
  
   int main()
  
   {
  
   std::cout << std::fixed;
  
   std::complex<double> z1(-2.0, 0.0);
  
   std::cout << "acos" << z1 << " = "
    << std::acos(z1) << '\n';
  
   std::complex<double> z2(-2.0, -0.0);
  
   std::cout << "acos" << z2 << " (the other
    side of the cut) = "
  
   << std::acos(z2) << '\n';
  
   // for any z, acos(z) = pi - acos(-z)
  
   const double pi = std::acos(-1);
  
   std::complex<double> z3 = pi - std::acos(z2);
  
   std::cout << "cos(pi - acos" << z2 << ") =
    " << std::cos(z3) << '\n';
  
   }
Output:¶
 acos(-2.000000,0.000000) = (3.141593,-1.316958)
  
   acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958)
  
   cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
See also¶
 asin(std::complex) computes arc sine of a complex number
  
   (C++11) (\({\small\arcsin{z}}\)arcsin(z))
  
   (function template)
  
   atan(std::complex) computes arc tangent of a complex number
  
   (C++11) (\({\small\arctan{z}}\)arctan(z))
  
   (function template)
  
   cos(std::complex) computes cosine of a complex number
    (\({\small\cos{z}}\)cos(z))
  
   (function template)
  
   acos
  
   acosf computes arc cosine (\({\small\arccos{x}}\)arccos(x))
  
   acosl (function)
  
   (C++11)
  
   (C++11)
  
   acos(std::valarray) applies the function std::acos to each element of
    valarray
  
   (function template)
  
   C documentation for
  
   cacos
| 2024.06.10 | http://cppreference.com |