table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ztrevc.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ztrevc.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ztrevc.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZTREVC (side, howmny, select, n, t, ldt, vl,
ldvl, vr, ldvr, mm, m, work, rwork, info)
ZTREVC
Function/Subroutine Documentation¶
subroutine ZTREVC (character side, character howmny, logical, dimension( * ) select, integer n, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZTREVC
Purpose:
!> !> ZTREVC computes some or all of the right and/or left eigenvectors of !> a complex upper triangular matrix T. !> Matrices of this type are produced by the Schur factorization of !> a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. !> !> The right eigenvector x and the left eigenvector y of T corresponding !> to an eigenvalue w are defined by: !> !> T*x = w*x, (y**H)*T = w*(y**H) !> !> where y**H denotes the conjugate transpose of the vector y. !> The eigenvalues are not input to this routine, but are read directly !> from the diagonal of T. !> !> This routine returns the matrices X and/or Y of right and left !> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an !> input matrix. If Q is the unitary factor that reduces a matrix A to !> Schur form T, then Q*X and Q*Y are the matrices of right and left !> eigenvectors of A. !>
Parameters
SIDE
!> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !>
HOWMNY
!> HOWMNY is CHARACTER*1 !> = 'A': compute all right and/or left eigenvectors; !> = 'B': compute all right and/or left eigenvectors, !> backtransformed using the matrices supplied in !> VR and/or VL; !> = 'S': compute selected right and/or left eigenvectors, !> as indicated by the logical array SELECT. !>
SELECT
!> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenvectors to be !> computed. !> The eigenvector corresponding to the j-th eigenvalue is !> computed if SELECT(j) = .TRUE.. !> Not referenced if HOWMNY = 'A' or 'B'. !>
N
!> N is INTEGER !> The order of the matrix T. N >= 0. !>
T
!> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular matrix T. T is modified, but restored !> on exit. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !>
VL
!> VL is COMPLEX*16 array, dimension (LDVL,MM) !> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'L' or 'B', VL contains: !> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*Y; !> if HOWMNY = 'S', the left eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VL, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'R'. !>
LDVL
!> LDVL is INTEGER !> The leading dimension of the array VL. LDVL >= 1, and if !> SIDE = 'L' or 'B', LDVL >= N. !>
VR
!> VR is COMPLEX*16 array, dimension (LDVR,MM) !> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by ZHSEQR). !> On exit, if SIDE = 'R' or 'B', VR contains: !> if HOWMNY = 'A', the matrix X of right eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*X; !> if HOWMNY = 'S', the right eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VR, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'L'. !>
LDVR
!> LDVR is INTEGER !> The leading dimension of the array VR. LDVR >= 1, and if !> SIDE = 'R' or 'B'; LDVR >= N. !>
MM
!> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !>
M
!> M is INTEGER !> The number of columns in the arrays VL and/or VR actually !> used to store the eigenvectors. If HOWMNY = 'A' or 'B', M !> is set to N. Each selected eigenvector occupies one !> column. !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The algorithm used in this program is basically backward (forward) !> substitution, with scaling to make the the code robust against !> possible overflow. !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x| + |y|. !>
Definition at line 216 of file ztrevc.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |