Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/ztpt01.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/ztpt01.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/ztpt01.f

SYNOPSIS

Functions/Subroutines


subroutine ZTPT01 (uplo, diag, n, ap, ainvp, rcond, rwork, resid)
ZTPT01

Function/Subroutine Documentation

subroutine ZTPT01 (character uplo, character diag, integer n, complex*16, dimension( * ) ap, complex*16, dimension( * ) ainvp, double precision rcond, double precision, dimension( * ) rwork, double precision resid)

ZTPT01

Purpose:

!>
!> ZTPT01 computes the residual for a triangular matrix A times its
!> inverse when A is stored in packed format:
!>    RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
!> where EPS is the machine epsilon.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower triangular.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

DIAG

!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A is unit triangular.
!>          = 'N':  Non-unit triangular
!>          = 'U':  Unit triangular
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

AP

!>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          The original upper or lower triangular matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L',
!>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
!> 

AINVP

!>          AINVP is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          On entry, the (triangular) inverse of the matrix A, packed
!>          columnwise in a linear array as in AP.
!>          On exit, the contents of AINVP are destroyed.
!> 

RCOND

!>          RCOND is DOUBLE PRECISION
!>          The reciprocal condition number of A, computed as
!>          1/(norm(A) * norm(AINV)).
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

RESID

!>          RESID is DOUBLE PRECISION
!>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file ztpt01.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK