Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zget52.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zget52.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zget52.f

SYNOPSIS

Functions/Subroutines


subroutine ZGET52 (left, n, a, lda, b, ldb, e, lde, alpha, beta, work, rwork, result)
ZGET52

Function/Subroutine Documentation

subroutine ZGET52 (logical left, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( lde, * ) e, integer lde, complex*16, dimension( * ) alpha, complex*16, dimension( * ) beta, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)

ZGET52

Purpose:

!>
!> ZGET52  does an eigenvector check for the generalized eigenvalue
!> problem.
!>
!> The basic test for right eigenvectors is:
!>
!>                           | b(i) A E(i) -  a(i) B E(i) |
!>         RESULT(1) = max   -------------------------------
!>                      i    n ulp max( |b(i) A|, |a(i) B| )
!>
!> using the 1-norm.  Here, a(i)/b(i) = w is the i-th generalized
!> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
!> generalized eigenvalue of m A - B.
!>
!>                         H   H  _      _
!> For left eigenvectors, A , B , a, and b  are used.
!>
!> ZGET52 also tests the normalization of E.  Each eigenvector is
!> supposed to be normalized so that the maximum 
!> of its elements is 1, where in this case, 
!> of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
!> maximum  norm of a vector v  M(v).
!> If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
!> vector. The normalization test is:
!>
!>         RESULT(2) =      max       | M(v(i)) - 1 | / ( n ulp )
!>                    eigenvectors v(i)
!>
!> 

Parameters

LEFT

!>          LEFT is LOGICAL
!>          =.TRUE.:  The eigenvectors in the columns of E are assumed
!>                    to be *left* eigenvectors.
!>          =.FALSE.: The eigenvectors in the columns of E are assumed
!>                    to be *right* eigenvectors.
!> 

N

!>          N is INTEGER
!>          The size of the matrices.  If it is zero, ZGET52 does
!>          nothing.  It must be at least zero.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA, N)
!>          The matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  It must be at least 1
!>          and at least N.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB, N)
!>          The matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  It must be at least 1
!>          and at least N.
!> 

E

!>          E is COMPLEX*16 array, dimension (LDE, N)
!>          The matrix of eigenvectors.  It must be O( 1 ).
!> 

LDE

!>          LDE is INTEGER
!>          The leading dimension of E.  It must be at least 1 and at
!>          least N.
!> 

ALPHA

!>          ALPHA is COMPLEX*16 array, dimension (N)
!>          The values a(i) as described above, which, along with b(i),
!>          define the generalized eigenvalues.
!> 

BETA

!>          BETA is COMPLEX*16 array, dimension (N)
!>          The values b(i) as described above, which, along with a(i),
!>          define the generalized eigenvalues.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (N**2)
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

RESULT

!>          RESULT is DOUBLE PRECISION array, dimension (2)
!>          The values computed by the test described above.  If A E or
!>          B E is likely to overflow, then RESULT(1:2) is set to
!>          10 / ulp.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 160 of file zget52.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK