Scroll to navigation

zgemlq.f(3) LAPACK zgemlq.f(3)

NAME

zgemlq.f

SYNOPSIS

Functions/Subroutines


subroutine ZGEMLQ (side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
ZGEMLQ

Function/Subroutine Documentation

subroutine ZGEMLQ (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) t, integer tsize, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)

ZGEMLQ

Purpose:


ZGEMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product
of blocked elementary reflectors computed by short wide
LQ factorization (ZGELQ)

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.

M


M is INTEGER
The number of rows of the matrix A. M >=0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX*16 array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
Part of the data structure to represent Q as returned by ZGELQ.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

T


T is COMPLEX*16 array, dimension (MAX(5,TSIZE)).
Part of the data structure to represent Q as returned by ZGELQ.

TSIZE


TSIZE is INTEGER
The dimension of the array T. TSIZE >= 5.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


(workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed. The routine
only calculates the size of the WORK array, returns this
value as WORK(1), and no error message related to WORK
is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details


These details are particular for this LAPACK implementation. Users should not
take them for granted. These details may change in the future, and are not likely
true for another LAPACK implementation. These details are relevant if one wants
to try to understand the code. They are not part of the interface.
In this version,
T(2): row block size (MB)
T(3): column block size (NB)
T(6:TSIZE): data structure needed for Q, computed by
ZLASWLQ or ZGELQT
Depending on the matrix dimensions M and N, and row and column
block sizes MB and NB returned by ILAENV, ZGELQ will use either
ZLASWLQ (if the matrix is wide-and-short) or ZGELQT to compute
the LQ factorization.
This version of ZGEMLQ will use either ZLAMSWLQ or ZGEMLQT to
multiply matrix Q by another matrix.
Further Details in ZLAMSWLQ or ZGEMLQT.

Definition at line 167 of file zgemlq.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Mon Mar 11 2024 11:42:31 Version 3.9.0