Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvbd.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvbd.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvbd.f

SYNOPSIS

Functions/Subroutines


subroutine ZDRVBD (nsizes, mm, nn, ntypes, dotype, iseed, thresh, a, lda, u, ldu, vt, ldvt, asav, usav, vtsav, s, ssav, e, work, lwork, rwork, iwork, nounit, info)
ZDRVBD

Function/Subroutine Documentation

subroutine ZDRVBD (integer nsizes, integer, dimension( * ) mm, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, double precision thresh, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldvt, * ) vt, integer ldvt, complex*16, dimension( lda, * ) asav, complex*16, dimension( ldu, * ) usav, complex*16, dimension( ldvt, * ) vtsav, double precision, dimension( * ) s, double precision, dimension( * ) ssav, double precision, dimension( * ) e, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer nounit, integer info)

ZDRVBD

Purpose:

!>
!> ZDRVBD checks the singular value decomposition (SVD) driver ZGESVD,
!> ZGESDD, ZGESVJ, ZGEJSV, ZGESVDX, and ZGESVDQ.
!>
!> ZGESVD and ZGESDD factors A = U diag(S) VT, where U and VT are
!> unitary and diag(S) is diagonal with the entries of the array S on
!> its diagonal. The entries of S are the singular values, nonnegative
!> and stored in decreasing order.  U and VT can be optionally not
!> computed, overwritten on A, or computed partially.
!>
!> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN.
!> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N.
!>
!> When ZDRVBD is called, a number of matrix  (M's and N's)
!> and a number of matrix  are specified.  For each size (M,N)
!> and each type of matrix, and for the minimal workspace as well as
!> workspace adequate to permit blocking, an  M x N  matrix  will be
!> generated and used to test the SVD routines.  For each matrix, A will
!> be factored as A = U diag(S) VT and the following 12 tests computed:
!>
!> Test for ZGESVD:
!>
!> (1)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (2)   | I - U'U | / ( M ulp )
!>
!> (3)   | I - VT VT' | / ( N ulp )
!>
!> (4)   S contains MNMIN nonnegative values in decreasing order.
!>       (Return 0 if true, 1/ULP if false.)
!>
!> (5)   | U - Upartial | / ( M ulp ) where Upartial is a partially
!>       computed U.
!>
!> (6)   | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>       computed VT.
!>
!> (7)   | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>       vector of singular values from the partial SVD
!>
!> Test for ZGESDD:
!>
!> (8)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (9)   | I - U'U | / ( M ulp )
!>
!> (10)  | I - VT VT' | / ( N ulp )
!>
!> (11)  S contains MNMIN nonnegative values in decreasing order.
!>       (Return 0 if true, 1/ULP if false.)
!>
!> (12)  | U - Upartial | / ( M ulp ) where Upartial is a partially
!>       computed U.
!>
!> (13)  | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>       computed VT.
!>
!> (14)  | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>       vector of singular values from the partial SVD
!>
!> Test for ZGESVDQ:
!>
!> (36)  | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (37)  | I - U'U | / ( M ulp )
!>
!> (38)  | I - VT VT' | / ( N ulp )
!>
!> (39)  S contains MNMIN nonnegative values in decreasing order.
!>       (Return 0 if true, 1/ULP if false.)
!>
!> Test for ZGESVJ:
!>
!> (15)  | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (16)  | I - U'U | / ( M ulp )
!>
!> (17)  | I - VT VT' | / ( N ulp )
!>
!> (18)  S contains MNMIN nonnegative values in decreasing order.
!>       (Return 0 if true, 1/ULP if false.)
!>
!> Test for ZGEJSV:
!>
!> (19)  | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (20)  | I - U'U | / ( M ulp )
!>
!> (21)  | I - VT VT' | / ( N ulp )
!>
!> (22)  S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> Test for ZGESVDX( 'V', 'V', 'A' )/ZGESVDX( 'N', 'N', 'A' )
!>
!> (23)  | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (24)  | I - U'U | / ( M ulp )
!>
!> (25)  | I - VT VT' | / ( N ulp )
!>
!> (26)  S contains MNMIN nonnegative values in decreasing order.
!>       (Return 0 if true, 1/ULP if false.)
!>
!> (27)  | U - Upartial | / ( M ulp ) where Upartial is a partially
!>       computed U.
!>
!> (28)  | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>       computed VT.
!>
!> (29)  | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>       vector of singular values from the partial SVD
!>
!> Test for ZGESVDX( 'V', 'V', 'I' )
!>
!> (30)  | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
!>
!> (31)  | I - U'U | / ( M ulp )
!>
!> (32)  | I - VT VT' | / ( N ulp )
!>
!> Test for ZGESVDX( 'V', 'V', 'V' )
!>
!> (33)   | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
!>
!> (34)   | I - U'U | / ( M ulp )
!>
!> (35)   | I - VT VT' | / ( N ulp )
!>
!> The  are specified by the arrays MM(1:NSIZES) and
!> NN(1:NSIZES); the value of each element pair (MM(j),NN(j))
!> specifies one size.  The  are specified by a logical array
!> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type 
!> will be generated.
!> Currently, the list of possible types is:
!>
!> (1)  The zero matrix.
!> (2)  The identity matrix.
!> (3)  A matrix of the form  U D V, where U and V are unitary and
!>      D has evenly spaced entries 1, ..., ULP with random signs
!>      on the diagonal.
!> (4)  Same as (3), but multiplied by the underflow-threshold / ULP.
!> (5)  Same as (3), but multiplied by the overflow-threshold * ULP.
!> 

Parameters

NSIZES

!>          NSIZES is INTEGER
!>          The number of sizes of matrices to use.  If it is zero,
!>          ZDRVBD does nothing.  It must be at least zero.
!> 

MM

!>          MM is INTEGER array, dimension (NSIZES)
!>          An array containing the matrix  to be used.  For
!>          each j=1,...,NSIZES, if MM(j) is zero, then MM(j) and NN(j)
!>          will be ignored.  The MM(j) values must be at least zero.
!> 

NN

!>          NN is INTEGER array, dimension (NSIZES)
!>          An array containing the matrix  to be used.  For
!>          each j=1,...,NSIZES, if NN(j) is zero, then MM(j) and NN(j)
!>          will be ignored.  The NN(j) values must be at least zero.
!> 

NTYPES

!>          NTYPES is INTEGER
!>          The number of elements in DOTYPE.   If it is zero, ZDRVBD
!>          does nothing.  It must be at least zero.  If it is MAXTYP+1
!>          and NSIZES is 1, then an additional type, MAXTYP+1 is
!>          defined, which is to use whatever matrices are in A and B.
!>          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
!>          DOTYPE(MAXTYP+1) is .TRUE. .
!> 

DOTYPE

!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
!>          of type j will be generated.  If NTYPES is smaller than the
!>          maximum number of types defined (PARAMETER MAXTYP), then
!>          types NTYPES+1 through MAXTYP will not be generated.  If
!>          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
!>          DOTYPE(NTYPES) will be ignored.
!> 

ISEED

!>          ISEED is INTEGER array, dimension (4)
!>          On entry ISEED specifies the seed of the random number
!>          generator. The array elements should be between 0 and 4095;
!>          if not they will be reduced mod 4096.  Also, ISEED(4) must
!>          be odd.  The random number generator uses a linear
!>          congruential sequence limited to small integers, and so
!>          should produce machine independent random numbers. The
!>          values of ISEED are changed on exit, and can be used in the
!>          next call to ZDRVBD to continue the same random number
!>          sequence.
!> 

THRESH

!>          THRESH is DOUBLE PRECISION
!>          A test will count as  if the , computed as
!>          described above, exceeds THRESH.  Note that the error
!>          is scaled to be O(1), so THRESH should be a reasonably
!>          small multiple of 1, e.g., 10 or 100.  In particular,
!>          it should not depend on the precision (single vs. double)
!>          or the size of the matrix.  It must be at least zero.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,max(NN))
!>          Used to hold the matrix whose singular values are to be
!>          computed.  On exit, A contains the last matrix actually
!>          used.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  It must be at
!>          least 1 and at least max( MM ).
!> 

U

!>          U is COMPLEX*16 array, dimension (LDU,max(MM))
!>          Used to hold the computed matrix of right singular vectors.
!>          On exit, U contains the last such vectors actually computed.
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of U.  It must be at
!>          least 1 and at least max( MM ).
!> 

VT

!>          VT is COMPLEX*16 array, dimension (LDVT,max(NN))
!>          Used to hold the computed matrix of left singular vectors.
!>          On exit, VT contains the last such vectors actually computed.
!> 

LDVT

!>          LDVT is INTEGER
!>          The leading dimension of VT.  It must be at
!>          least 1 and at least max( NN ).
!> 

ASAV

!>          ASAV is COMPLEX*16 array, dimension (LDA,max(NN))
!>          Used to hold a different copy of the matrix whose singular
!>          values are to be computed.  On exit, A contains the last
!>          matrix actually used.
!> 

USAV

!>          USAV is COMPLEX*16 array, dimension (LDU,max(MM))
!>          Used to hold a different copy of the computed matrix of
!>          right singular vectors. On exit, USAV contains the last such
!>          vectors actually computed.
!> 

VTSAV

!>          VTSAV is COMPLEX*16 array, dimension (LDVT,max(NN))
!>          Used to hold a different copy of the computed matrix of
!>          left singular vectors. On exit, VTSAV contains the last such
!>          vectors actually computed.
!> 

S

!>          S is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
!>          Contains the computed singular values.
!> 

SSAV

!>          SSAV is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
!>          Contains another copy of the computed singular values.
!> 

E

!>          E is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
!>          Workspace for ZGESVD.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The number of entries in WORK.  This must be at least
!>          MAX(3*MIN(M,N)+MAX(M,N)**2,5*MIN(M,N),3*MAX(M,N)) for all
!>          pairs  (M,N)=(MM(j),NN(j))
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array,
!>                      dimension ( 5*max(max(MM,NN)) )
!> 

IWORK

!>          IWORK is INTEGER array, dimension at least 8*min(M,N)
!> 

NOUNIT

!>          NOUNIT is INTEGER
!>          The FORTRAN unit number for printing out error messages
!>          (e.g., if a routine returns IINFO not equal to 0.)
!> 

INFO

!>          INFO is INTEGER
!>          If 0, then everything ran OK.
!>           -1: NSIZES < 0
!>           -2: Some MM(j) < 0
!>           -3: Some NN(j) < 0
!>           -4: NTYPES < 0
!>           -7: THRESH < 0
!>          -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
!>          -12: LDU < 1 or LDU < MMAX.
!>          -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ).
!>          -21: LWORK too small.
!>          If  ZLATMS, or ZGESVD returns an error code, the
!>              absolute value of it is returned.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 397 of file zdrvbd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK