table of contents
unml2(3) | Library Functions Manual | unml2(3) |
NAME¶
unml2 - {un,or}ml2: multiply by Q, level 2, step in unmlq
SYNOPSIS¶
Functions¶
subroutine CUNML2 (side, trans, m, n, k, a, lda, tau, c,
ldc, work, info)
CUNML2 multiplies a general matrix by the unitary matrix from a LQ
factorization determined by cgelqf (unblocked algorithm). subroutine
DORML2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORML2 multiplies a general matrix by the orthogonal matrix from a LQ
factorization determined by sgelqf (unblocked algorithm). subroutine
SORML2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORML2 multiplies a general matrix by the orthogonal matrix from a LQ
factorization determined by sgelqf (unblocked algorithm). subroutine
ZUNML2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNML2 multiplies a general matrix by the unitary matrix from a LQ
factorization determined by cgelqf (unblocked algorithm).
Detailed Description¶
Function Documentation¶
subroutine CUNML2 (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer info)¶
CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).
Purpose:
!> !> CUNML2 overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is COMPLEX array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> CGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
TAU
!> TAU is COMPLEX array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by CGELQF. !>
C
!> C is COMPLEX array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file cunml2.f.
subroutine DORML2 (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer info)¶
DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).
Purpose:
!> !> DORML2 overwrites the general real m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**T* C if SIDE = 'L' and TRANS = 'T', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**T if SIDE = 'R' and TRANS = 'T', !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left !> = 'R': apply Q or Q**T from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'T': apply Q**T (Transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by DGELQF. !>
C
!> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file dorml2.f.
subroutine SORML2 (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer info)¶
SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).
Purpose:
!> !> SORML2 overwrites the general real m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**T* C if SIDE = 'L' and TRANS = 'T', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**T if SIDE = 'R' and TRANS = 'T', !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(k) . . . H(2) H(1) !> !> as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left !> = 'R': apply Q or Q**T from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'T': apply Q**T (Transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is REAL array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> SGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by SGELQF. !>
C
!> C is REAL array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is REAL array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file sorml2.f.
subroutine ZUNML2 (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer info)¶
ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).
Purpose:
!> !> ZUNML2 overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file zunml2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |