table of contents
ungrq(3) | Library Functions Manual | ungrq(3) |
NAME¶
ungrq - {un,or}grq: generate explicit Q from gerqf
SYNOPSIS¶
Functions¶
subroutine CUNGRQ (m, n, k, a, lda, tau, work, lwork, info)
CUNGRQ subroutine DORGRQ (m, n, k, a, lda, tau, work, lwork,
info)
DORGRQ subroutine SORGRQ (m, n, k, a, lda, tau, work, lwork,
info)
SORGRQ subroutine ZUNGRQ (m, n, k, a, lda, tau, work, lwork,
info)
ZUNGRQ
Detailed Description¶
Function Documentation¶
subroutine CUNGRQ (integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)¶
CUNGRQ
Purpose:
!> !> CUNGRQ generates an M-by-N complex matrix Q with orthonormal rows, !> which is defined as the last M rows of a product of K elementary !> reflectors of order N !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by CGERQF. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q. N >= M. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by CGERQF in the last k rows of its array argument !> A. !> On exit, the M-by-N matrix Q. !>
LDA
!> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by CGERQF. !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file cungrq.f.
subroutine DORGRQ (integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)¶
DORGRQ
Purpose:
!> !> DORGRQ generates an M-by-N real matrix Q with orthonormal rows, !> which is defined as the last M rows of a product of K elementary !> reflectors of order N !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by DGERQF. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q. N >= M. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by DGERQF in the last k rows of its array argument !> A. !> On exit, the M-by-N matrix Q. !>
LDA
!> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by DGERQF. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file dorgrq.f.
subroutine SORGRQ (integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)¶
SORGRQ
Purpose:
!> !> SORGRQ generates an M-by-N real matrix Q with orthonormal rows, !> which is defined as the last M rows of a product of K elementary !> reflectors of order N !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by SGERQF. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q. N >= M. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by SGERQF in the last k rows of its array argument !> A. !> On exit, the M-by-N matrix Q. !>
LDA
!> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by SGERQF. !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file sorgrq.f.
subroutine ZUNGRQ (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZUNGRQ
Purpose:
!> !> ZUNGRQ generates an M-by-N complex matrix Q with orthonormal rows, !> which is defined as the last M rows of a product of K elementary !> reflectors of order N !> !> Q = H(1)**H H(2)**H . . . H(k)**H !> !> as returned by ZGERQF. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix Q. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q. N >= M. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the (m-k+i)-th row must contain the vector which !> defines the elementary reflector H(i), for i = 1,2,...,k, as !> returned by ZGERQF in the last k rows of its array argument !> A. !> On exit, the M-by-N matrix Q. !>
LDA
!> LDA is INTEGER !> The first dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGERQF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument has an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file zungrq.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |