Scroll to navigation

ung2l(3) Library Functions Manual ung2l(3)

NAME

ung2l - {un,or}g2l: step in ungql

SYNOPSIS

Functions


subroutine CUNG2L (m, n, k, a, lda, tau, work, info)
CUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm). subroutine DORG2L (m, n, k, a, lda, tau, work, info)
DORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm). subroutine SORG2L (m, n, k, a, lda, tau, work, info)
SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm). subroutine ZUNG2L (m, n, k, a, lda, tau, work, info)
ZUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm).

Detailed Description

Function Documentation

subroutine CUNG2L (integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)

CUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm).

Purpose:

!>
!> CUNG2L generates an m by n complex matrix Q with orthonormal columns,
!> which is defined as the last n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by CGEQLF.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the (n-k+i)-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by CGEQLF in the last k columns of its array
!>          argument A.
!>          On exit, the m-by-n matrix Q.
!> 

LDA

!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by CGEQLF.
!> 

WORK

!>          WORK is COMPLEX array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file cung2l.f.

subroutine DORG2L (integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)

DORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).

Purpose:

!>
!> DORG2L generates an m by n real matrix Q with orthonormal columns,
!> which is defined as the last n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by DGEQLF.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the (n-k+i)-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by DGEQLF in the last k columns of its array
!>          argument A.
!>          On exit, the m by n matrix Q.
!> 

LDA

!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 

TAU

!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGEQLF.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file dorg2l.f.

subroutine SORG2L (integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)

SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).

Purpose:

!>
!> SORG2L generates an m by n real matrix Q with orthonormal columns,
!> which is defined as the last n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by SGEQLF.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the (n-k+i)-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by SGEQLF in the last k columns of its array
!>          argument A.
!>          On exit, the m by n matrix Q.
!> 

LDA

!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 

TAU

!>          TAU is REAL array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by SGEQLF.
!> 

WORK

!>          WORK is REAL array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file sorg2l.f.

subroutine ZUNG2L (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)

ZUNG2L generates all or part of the unitary matrix Q from a QL factorization determined by cgeqlf (unblocked algorithm).

Purpose:

!>
!> ZUNG2L generates an m by n complex matrix Q with orthonormal columns,
!> which is defined as the last n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by ZGEQLF.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the (n-k+i)-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by ZGEQLF in the last k columns of its array
!>          argument A.
!>          On exit, the m-by-n matrix Q.
!> 

LDA

!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX*16 array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by ZGEQLF.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file zung2l.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK