table of contents
trsm(3) | Library Functions Manual | trsm(3) |
NAME¶
trsm - trsm: triangular matrix-matrix solve
SYNOPSIS¶
Functions¶
subroutine CTRSM (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)
CTRSM subroutine DTRSM (side, uplo, transa, diag, m, n, alpha,
a, lda, b, ldb)
DTRSM subroutine STRSM (side, uplo, transa, diag, m, n, alpha,
a, lda, b, ldb)
STRSM subroutine ZTRSM (side, uplo, transa, diag, m, n, alpha,
a, lda, b, ldb)
ZTRSM
Detailed Description¶
Function Documentation¶
subroutine CTRSM (character side, character uplo, character transa, character diag, integer m, integer n, complex alpha, complex, dimension(lda,*) a, integer lda, complex, dimension(ldb,*) b, integer ldb)¶
CTRSM
Purpose:
!> !> CTRSM solves one of the matrix equations !> !> op( A )*X = alpha*B, or X*op( A ) = alpha*B, !> !> where alpha is a scalar, X and B are m by n matrices, A is a unit, or !> non-unit, upper or lower triangular matrix and op( A ) is one of !> !> op( A ) = A or op( A ) = A**T or op( A ) = A**H. !> !> The matrix X is overwritten on B. !>
Parameters
!> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether op( A ) appears on the left !> or right of X as follows: !> !> SIDE = 'L' or 'l' op( A )*X = alpha*B. !> !> SIDE = 'R' or 'r' X*op( A ) = alpha*B. !>
UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the matrix A is an upper or !> lower triangular matrix as follows: !> !> UPLO = 'U' or 'u' A is an upper triangular matrix. !> !> UPLO = 'L' or 'l' A is a lower triangular matrix. !>
TRANSA
!> TRANSA is CHARACTER*1 !> On entry, TRANSA specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANSA = 'N' or 'n' op( A ) = A. !> !> TRANSA = 'T' or 't' op( A ) = A**T. !> !> TRANSA = 'C' or 'c' op( A ) = A**H. !>
DIAG
!> DIAG is CHARACTER*1 !> On entry, DIAG specifies whether or not A is unit triangular !> as follows: !> !> DIAG = 'U' or 'u' A is assumed to be unit triangular. !> !> DIAG = 'N' or 'n' A is not assumed to be unit !> triangular. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !>
A
!> A is COMPLEX array, dimension ( LDA, k ), !> where k is m when SIDE = 'L' or 'l' !> and k is n when SIDE = 'R' or 'r'. !> Before entry with UPLO = 'U' or 'u', the leading k by k !> upper triangular part of the array A must contain the upper !> triangular matrix and the strictly lower triangular part of !> A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading k by k !> lower triangular part of the array A must contain the lower !> triangular matrix and the strictly upper triangular part of !> A is not referenced. !> Note that when DIAG = 'U' or 'u', the diagonal elements of !> A are not referenced either, but are assumed to be unity. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' !> then LDA must be at least max( 1, n ). !>
B
!> B is COMPLEX array, dimension ( LDB, N ) !> Before entry, the leading m by n part of the array B must !> contain the right-hand side matrix B, and on exit is !> overwritten by the solution matrix X. !>
LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !>
Definition at line 179 of file ctrsm.f.
subroutine DTRSM (character side, character uplo, character transa, character diag, integer m, integer n, double precision alpha, double precision, dimension(lda,*) a, integer lda, double precision, dimension(ldb,*) b, integer ldb)¶
DTRSM
Purpose:
!> !> DTRSM solves one of the matrix equations !> !> op( A )*X = alpha*B, or X*op( A ) = alpha*B, !> !> where alpha is a scalar, X and B are m by n matrices, A is a unit, or !> non-unit, upper or lower triangular matrix and op( A ) is one of !> !> op( A ) = A or op( A ) = A**T. !> !> The matrix X is overwritten on B. !>
Parameters
!> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether op( A ) appears on the left !> or right of X as follows: !> !> SIDE = 'L' or 'l' op( A )*X = alpha*B. !> !> SIDE = 'R' or 'r' X*op( A ) = alpha*B. !>
UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the matrix A is an upper or !> lower triangular matrix as follows: !> !> UPLO = 'U' or 'u' A is an upper triangular matrix. !> !> UPLO = 'L' or 'l' A is a lower triangular matrix. !>
TRANSA
!> TRANSA is CHARACTER*1 !> On entry, TRANSA specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANSA = 'N' or 'n' op( A ) = A. !> !> TRANSA = 'T' or 't' op( A ) = A**T. !> !> TRANSA = 'C' or 'c' op( A ) = A**T. !>
DIAG
!> DIAG is CHARACTER*1 !> On entry, DIAG specifies whether or not A is unit triangular !> as follows: !> !> DIAG = 'U' or 'u' A is assumed to be unit triangular. !> !> DIAG = 'N' or 'n' A is not assumed to be unit !> triangular. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !>
ALPHA
!> ALPHA is DOUBLE PRECISION. !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !>
A
!> A is DOUBLE PRECISION array, dimension ( LDA, k ), !> where k is m when SIDE = 'L' or 'l' !> and k is n when SIDE = 'R' or 'r'. !> Before entry with UPLO = 'U' or 'u', the leading k by k !> upper triangular part of the array A must contain the upper !> triangular matrix and the strictly lower triangular part of !> A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading k by k !> lower triangular part of the array A must contain the lower !> triangular matrix and the strictly upper triangular part of !> A is not referenced. !> Note that when DIAG = 'U' or 'u', the diagonal elements of !> A are not referenced either, but are assumed to be unity. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' !> then LDA must be at least max( 1, n ). !>
B
!> B is DOUBLE PRECISION array, dimension ( LDB, N ) !> Before entry, the leading m by n part of the array B must !> contain the right-hand side matrix B, and on exit is !> overwritten by the solution matrix X. !>
LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !>
Definition at line 180 of file dtrsm.f.
subroutine STRSM (character side, character uplo, character transa, character diag, integer m, integer n, real alpha, real, dimension(lda,*) a, integer lda, real, dimension(ldb,*) b, integer ldb)¶
STRSM
Purpose:
!> !> STRSM solves one of the matrix equations !> !> op( A )*X = alpha*B, or X*op( A ) = alpha*B, !> !> where alpha is a scalar, X and B are m by n matrices, A is a unit, or !> non-unit, upper or lower triangular matrix and op( A ) is one of !> !> op( A ) = A or op( A ) = A**T. !> !> The matrix X is overwritten on B. !>
Parameters
!> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether op( A ) appears on the left !> or right of X as follows: !> !> SIDE = 'L' or 'l' op( A )*X = alpha*B. !> !> SIDE = 'R' or 'r' X*op( A ) = alpha*B. !>
UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the matrix A is an upper or !> lower triangular matrix as follows: !> !> UPLO = 'U' or 'u' A is an upper triangular matrix. !> !> UPLO = 'L' or 'l' A is a lower triangular matrix. !>
TRANSA
!> TRANSA is CHARACTER*1 !> On entry, TRANSA specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANSA = 'N' or 'n' op( A ) = A. !> !> TRANSA = 'T' or 't' op( A ) = A**T. !> !> TRANSA = 'C' or 'c' op( A ) = A**T. !>
DIAG
!> DIAG is CHARACTER*1 !> On entry, DIAG specifies whether or not A is unit triangular !> as follows: !> !> DIAG = 'U' or 'u' A is assumed to be unit triangular. !> !> DIAG = 'N' or 'n' A is not assumed to be unit !> triangular. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !>
A
!> A is REAL array, dimension ( LDA, k ), !> where k is m when SIDE = 'L' or 'l' !> and k is n when SIDE = 'R' or 'r'. !> Before entry with UPLO = 'U' or 'u', the leading k by k !> upper triangular part of the array A must contain the upper !> triangular matrix and the strictly lower triangular part of !> A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading k by k !> lower triangular part of the array A must contain the lower !> triangular matrix and the strictly upper triangular part of !> A is not referenced. !> Note that when DIAG = 'U' or 'u', the diagonal elements of !> A are not referenced either, but are assumed to be unity. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' !> then LDA must be at least max( 1, n ). !>
B
!> B is REAL array, dimension ( LDB, N ) !> Before entry, the leading m by n part of the array B must !> contain the right-hand side matrix B, and on exit is !> overwritten by the solution matrix X. !>
LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !>
Definition at line 180 of file strsm.f.
subroutine ZTRSM (character side, character uplo, character transa, character diag, integer m, integer n, complex*16 alpha, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(ldb,*) b, integer ldb)¶
ZTRSM
Purpose:
!> !> ZTRSM solves one of the matrix equations !> !> op( A )*X = alpha*B, or X*op( A ) = alpha*B, !> !> where alpha is a scalar, X and B are m by n matrices, A is a unit, or !> non-unit, upper or lower triangular matrix and op( A ) is one of !> !> op( A ) = A or op( A ) = A**T or op( A ) = A**H. !> !> The matrix X is overwritten on B. !>
Parameters
!> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether op( A ) appears on the left !> or right of X as follows: !> !> SIDE = 'L' or 'l' op( A )*X = alpha*B. !> !> SIDE = 'R' or 'r' X*op( A ) = alpha*B. !>
UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the matrix A is an upper or !> lower triangular matrix as follows: !> !> UPLO = 'U' or 'u' A is an upper triangular matrix. !> !> UPLO = 'L' or 'l' A is a lower triangular matrix. !>
TRANSA
!> TRANSA is CHARACTER*1 !> On entry, TRANSA specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANSA = 'N' or 'n' op( A ) = A. !> !> TRANSA = 'T' or 't' op( A ) = A**T. !> !> TRANSA = 'C' or 'c' op( A ) = A**H. !>
DIAG
!> DIAG is CHARACTER*1 !> On entry, DIAG specifies whether or not A is unit triangular !> as follows: !> !> DIAG = 'U' or 'u' A is assumed to be unit triangular. !> !> DIAG = 'N' or 'n' A is not assumed to be unit !> triangular. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !>
A
!> A is COMPLEX*16 array, dimension ( LDA, k ), !> where k is m when SIDE = 'L' or 'l' !> and k is n when SIDE = 'R' or 'r'. !> Before entry with UPLO = 'U' or 'u', the leading k by k !> upper triangular part of the array A must contain the upper !> triangular matrix and the strictly lower triangular part of !> A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading k by k !> lower triangular part of the array A must contain the lower !> triangular matrix and the strictly upper triangular part of !> A is not referenced. !> Note that when DIAG = 'U' or 'u', the diagonal elements of !> A are not referenced either, but are assumed to be unity. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' !> then LDA must be at least max( 1, n ). !>
B
!> B is COMPLEX*16 array, dimension ( LDB, N ) !> Before entry, the leading m by n part of the array B must !> contain the right-hand side matrix B, and on exit is !> overwritten by the solution matrix X. !>
LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !>
Definition at line 179 of file ztrsm.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |