table of contents
tpqrt2(3) | Library Functions Manual | tpqrt2(3) |
NAME¶
tpqrt2 - tpqrt2: QR factor, level 2
SYNOPSIS¶
Functions¶
subroutine CTPQRT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
CTPQRT2 computes a QR factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q. subroutine
DTPQRT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
DTPQRT2 computes a QR factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q. subroutine
STPQRT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
STPQRT2 computes a QR factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q. subroutine
ZTPQRT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPQRT2 computes a QR factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q.
Detailed Description¶
Function Documentation¶
subroutine CTPQRT2 (integer m, integer n, integer l, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldt, * ) t, integer ldt, integer info)¶
CTPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> CTPQRT2 computes a QR factorization of a complex !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is COMPLEX array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is COMPLEX array, dimension (LDT,N) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W * T * W**H !> !> where W**H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 172 of file ctpqrt2.f.
subroutine DTPQRT2 (integer m, integer n, integer l, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldt, * ) t, integer ldt, integer info)¶
DTPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> DTPQRT2 computes a QR factorization of a real !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,N) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W * T * W**T !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 172 of file dtpqrt2.f.
subroutine STPQRT2 (integer m, integer n, integer l, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldt, * ) t, integer ldt, integer info)¶
STPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> STPQRT2 computes a QR factorization of a real !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is REAL array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is REAL array, dimension (LDT,N) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W * T * W^H !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 172 of file stpqrt2.f.
subroutine ZTPQRT2 (integer m, integer n, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldt, * ) t, integer ldt, integer info)¶
ZTPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> ZTPQRT2 computes a QR factorization of a complex !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is COMPLEX*16 array, dimension (LDT,N) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W * T * W**H !> !> where W**H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 172 of file ztpqrt2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |