table of contents
tplqt2(3) | Library Functions Manual | tplqt2(3) |
NAME¶
tplqt2 - tplqt2: QR factor, level 2
SYNOPSIS¶
Functions¶
subroutine CTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
CTPLQT2 subroutine DTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt,
info)
DTPLQT2 computes a LQ factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q. subroutine
STPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
STPLQT2 computes a LQ factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q. subroutine
ZTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPLQT2 computes a LQ factorization of a real or complex
'triangular-pentagonal' matrix, which is composed of a triangular block and
a pentagonal block, using the compact WY representation for Q.
Detailed Description¶
Function Documentation¶
subroutine CTPLQT2 (integer m, integer n, integer l, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldt, * ) t, integer ldt, integer info)¶
CTPLQT2
Purpose:
!> !> CTPLQT2 computes a LQ a factorization of a complex !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the lower trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is COMPLEX array, dimension (LDA,M) !> On entry, the lower triangular M-by-M matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the lower triangular matrix L. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
B
!> B is COMPLEX array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first N-L columns !> are rectangular, and the last L columns are lower trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is COMPLEX array, dimension (LDT,M) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a M-by-(M+N) matrix !> !> C = [ A ][ B ] !> !> !> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal !> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L !> upper trapezoidal matrix B2: !> !> B = [ B1 ][ B2 ] !> [ B1 ] <- M-by-(N-L) rectangular !> [ B2 ] <- M-by-L lower trapezoidal. !> !> The lower trapezoidal matrix B2 consists of the first L columns of a !> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is lower triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th row !> above the diagonal (of A) in the M-by-(M+N) input matrix C !> !> C = [ A ][ B ] !> [ A ] <- lower triangular M-by-M !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ][ V ] !> [ I ] <- identity, M-by-M !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> W = [ V1 ][ V2 ] !> [ V1 ] <- M-by-(N-L) rectangular !> [ V2 ] <- M-by-L lower trapezoidal. !> !> The rows of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W**T * T * W !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 161 of file ctplqt2.f.
subroutine DTPLQT2 (integer m, integer n, integer l, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldt, * ) t, integer ldt, integer info)¶
DTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> DTPLQT2 computes a LQ a factorization of a real !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the lower trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,M) !> On entry, the lower triangular M-by-M matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the lower triangular matrix L. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first N-L columns !> are rectangular, and the last L columns are lower trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,M) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a M-by-(M+N) matrix !> !> C = [ A ][ B ] !> !> !> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal !> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L !> upper trapezoidal matrix B2: !> !> B = [ B1 ][ B2 ] !> [ B1 ] <- M-by-(N-L) rectangular !> [ B2 ] <- M-by-L lower trapezoidal. !> !> The lower trapezoidal matrix B2 consists of the first L columns of a !> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is lower triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th row !> above the diagonal (of A) in the M-by-(M+N) input matrix C !> !> C = [ A ][ B ] !> [ A ] <- lower triangular M-by-M !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ][ V ] !> [ I ] <- identity, M-by-M !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> W = [ V1 ][ V2 ] !> [ V1 ] <- M-by-(N-L) rectangular !> [ V2 ] <- M-by-L lower trapezoidal. !> !> The rows of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W**T * T * W !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 176 of file dtplqt2.f.
subroutine STPLQT2 (integer m, integer n, integer l, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldt, * ) t, integer ldt, integer info)¶
STPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> STPLQT2 computes a LQ a factorization of a real !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the lower trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is REAL array, dimension (LDA,M) !> On entry, the lower triangular M-by-M matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the lower triangular matrix L. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
B
!> B is REAL array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first N-L columns !> are rectangular, and the last L columns are lower trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is REAL array, dimension (LDT,M) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a M-by-(M+N) matrix !> !> C = [ A ][ B ] !> !> !> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal !> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L !> upper trapezoidal matrix B2: !> !> B = [ B1 ][ B2 ] !> [ B1 ] <- M-by-(N-L) rectangular !> [ B2 ] <- M-by-L lower trapezoidal. !> !> The lower trapezoidal matrix B2 consists of the first L columns of a !> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is lower triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th row !> above the diagonal (of A) in the M-by-(M+N) input matrix C !> !> C = [ A ][ B ] !> [ A ] <- lower triangular M-by-M !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ][ V ] !> [ I ] <- identity, M-by-M !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> W = [ V1 ][ V2 ] !> [ V1 ] <- M-by-(N-L) rectangular !> [ V2 ] <- M-by-L lower trapezoidal. !> !> The rows of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W**T * T * W !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 176 of file stplqt2.f.
subroutine ZTPLQT2 (integer m, integer n, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldt, * ) t, integer ldt, integer info)¶
ZTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
!> !> ZTPLQT2 computes a LQ a factorization of a complex !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
Parameters
!> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !>
L
!> L is INTEGER !> The number of rows of the lower trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
A
!> A is COMPLEX*16 array, dimension (LDA,M) !> On entry, the lower triangular M-by-M matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the lower triangular matrix L. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
B
!> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first N-L columns !> are rectangular, and the last L columns are lower trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
T
!> T is COMPLEX*16 array, dimension (LDT,M) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a M-by-(M+N) matrix !> !> C = [ A ][ B ] !> !> !> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal !> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L !> upper trapezoidal matrix B2: !> !> B = [ B1 ][ B2 ] !> [ B1 ] <- M-by-(N-L) rectangular !> [ B2 ] <- M-by-L lower trapezoidal. !> !> The lower trapezoidal matrix B2 consists of the first L columns of a !> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is lower triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th row !> above the diagonal (of A) in the M-by-(M+N) input matrix C !> !> C = [ A ][ B ] !> [ A ] <- lower triangular M-by-M !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ][ V ] !> [ I ] <- identity, M-by-M !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> W = [ V1 ][ V2 ] !> [ V1 ] <- M-by-(N-L) rectangular !> [ V2 ] <- M-by-L lower trapezoidal. !> !> The rows of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W**T * T * W !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 176 of file ztplqt2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |