Scroll to navigation

tplqt2(3) Library Functions Manual tplqt2(3)

NAME

tplqt2 - tplqt2: QR factor, level 2

SYNOPSIS

Functions


subroutine CTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
CTPLQT2 subroutine DTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
DTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. subroutine STPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
STPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. subroutine ZTPLQT2 (m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Detailed Description

Function Documentation

subroutine CTPLQT2 (integer m, integer n, integer l, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldt, * ) t, integer ldt, integer info)

CTPLQT2

Purpose:

!>
!> CTPLQT2 computes a LQ a factorization of a complex 
!> matrix C, which is composed of a triangular block A and pentagonal block B,
!> using the compact WY representation for Q.
!> 

Parameters

M

!>          M is INTEGER
!>          The total number of rows of the matrix B.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B, and the order of
!>          the triangular matrix A.
!>          N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 

A

!>          A is COMPLEX array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

B

!>          B is COMPLEX array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 

T

!>          T is COMPLEX array, dimension (LDT,M)
!>          The N-by-N upper triangular factor T of the block reflector.
!>          See Further Details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= max(1,M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ][ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
!>  upper trapezoidal matrix B2:
!>
!>               B = [ B1 ][ B2 ]
!>                   [ B1 ]  <-     M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>
!>               C = [ A ][ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>
!>               W = [ I ][ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>
!>               W = [ V1 ][ V2 ]
!>                   [ V1 ] <-     M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>  The (M+N)-by-(M+N) block reflector H is then given by
!>
!>               H = I - W**T * T * W
!>
!>  where W^H is the conjugate transpose of W and T is the upper triangular
!>  factor of the block reflector.
!> 

Definition at line 161 of file ctplqt2.f.

subroutine DTPLQT2 (integer m, integer n, integer l, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldt, * ) t, integer ldt, integer info)

DTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Purpose:

!>
!> DTPLQT2 computes a LQ a factorization of a real 
!> matrix C, which is composed of a triangular block A and pentagonal block B,
!> using the compact WY representation for Q.
!> 

Parameters

M

!>          M is INTEGER
!>          The total number of rows of the matrix B.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B, and the order of
!>          the triangular matrix A.
!>          N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 

T

!>          T is DOUBLE PRECISION array, dimension (LDT,M)
!>          The N-by-N upper triangular factor T of the block reflector.
!>          See Further Details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= max(1,M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ][ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
!>  upper trapezoidal matrix B2:
!>
!>               B = [ B1 ][ B2 ]
!>                   [ B1 ]  <-     M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>
!>               C = [ A ][ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>
!>               W = [ I ][ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>
!>               W = [ V1 ][ V2 ]
!>                   [ V1 ] <-     M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>  The (M+N)-by-(M+N) block reflector H is then given by
!>
!>               H = I - W**T * T * W
!>
!>  where W^H is the conjugate transpose of W and T is the upper triangular
!>  factor of the block reflector.
!> 

Definition at line 176 of file dtplqt2.f.

subroutine STPLQT2 (integer m, integer n, integer l, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldt, * ) t, integer ldt, integer info)

STPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Purpose:

!>
!> STPLQT2 computes a LQ a factorization of a real 
!> matrix C, which is composed of a triangular block A and pentagonal block B,
!> using the compact WY representation for Q.
!> 

Parameters

M

!>          M is INTEGER
!>          The total number of rows of the matrix B.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B, and the order of
!>          the triangular matrix A.
!>          N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 

A

!>          A is REAL array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

B

!>          B is REAL array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 

T

!>          T is REAL array, dimension (LDT,M)
!>          The N-by-N upper triangular factor T of the block reflector.
!>          See Further Details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= max(1,M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ][ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
!>  upper trapezoidal matrix B2:
!>
!>               B = [ B1 ][ B2 ]
!>                   [ B1 ]  <-     M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>
!>               C = [ A ][ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>
!>               W = [ I ][ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>
!>               W = [ V1 ][ V2 ]
!>                   [ V1 ] <-     M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>  The (M+N)-by-(M+N) block reflector H is then given by
!>
!>               H = I - W**T * T * W
!>
!>  where W^H is the conjugate transpose of W and T is the upper triangular
!>  factor of the block reflector.
!> 

Definition at line 176 of file stplqt2.f.

subroutine ZTPLQT2 (integer m, integer n, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldt, * ) t, integer ldt, integer info)

ZTPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Purpose:

!>
!> ZTPLQT2 computes a LQ a factorization of a complex 
!> matrix C, which is composed of a triangular block A and pentagonal block B,
!> using the compact WY representation for Q.
!> 

Parameters

M

!>          M is INTEGER
!>          The total number of rows of the matrix B.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B, and the order of
!>          the triangular matrix A.
!>          N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 

T

!>          T is COMPLEX*16 array, dimension (LDT,M)
!>          The N-by-N upper triangular factor T of the block reflector.
!>          See Further Details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= max(1,M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ][ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
!>  upper trapezoidal matrix B2:
!>
!>               B = [ B1 ][ B2 ]
!>                   [ B1 ]  <-     M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>
!>               C = [ A ][ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>
!>               W = [ I ][ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>
!>               W = [ V1 ][ V2 ]
!>                   [ V1 ] <-     M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>  The (M+N)-by-(M+N) block reflector H is then given by
!>
!>               H = I - W**T * T * W
!>
!>  where W^H is the conjugate transpose of W and T is the upper triangular
!>  factor of the block reflector.
!> 

Definition at line 176 of file ztplqt2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK