table of contents
tbrfs(3) | Library Functions Manual | tbrfs(3) |
NAME¶
tbrfs - tbrfs: triangular iterative refinement
SYNOPSIS¶
Functions¶
subroutine CTBRFS (uplo, trans, diag, n, kd, nrhs, ab,
ldab, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CTBRFS subroutine DTBRFS (uplo, trans, diag, n, kd, nrhs, ab,
ldab, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DTBRFS subroutine STBRFS (uplo, trans, diag, n, kd, nrhs, ab,
ldab, b, ldb, x, ldx, ferr, berr, work, iwork, info)
STBRFS subroutine ZTBRFS (uplo, trans, diag, n, kd, nrhs, ab,
ldab, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZTBRFS
Detailed Description¶
Function Documentation¶
subroutine CTBRFS (character uplo, character trans, character diag, integer n, integer kd, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)¶
CTBRFS
Purpose:
!> !> CTBRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular band !> coefficient matrix. !> !> The solution matrix X must be computed by CTBTRS or some other !> means before entering this routine. CTBRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
DIAG
!> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is COMPLEX array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is COMPLEX array, dimension (LDX,NRHS) !> The solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
FERR
!> FERR is REAL array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
BERR
!> BERR is REAL array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
WORK
!> WORK is COMPLEX array, dimension (2*N) !>
RWORK
!> RWORK is REAL array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file ctbrfs.f.
subroutine DTBRFS (character uplo, character trans, character diag, integer n, integer kd, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
DTBRFS
Purpose:
!> !> DTBRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular band !> coefficient matrix. !> !> The solution matrix X must be computed by DTBTRS or some other !> means before entering this routine. DTBRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !>
DIAG
!> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (3*N) !>
IWORK
!> IWORK is INTEGER array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file dtbrfs.f.
subroutine STBRFS (character uplo, character trans, character diag, integer n, integer kd, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
STBRFS
Purpose:
!> !> STBRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular band !> coefficient matrix. !> !> The solution matrix X must be computed by STBTRS or some other !> means before entering this routine. STBRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !>
DIAG
!> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is REAL array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is REAL array, dimension (LDX,NRHS) !> The solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
FERR
!> FERR is REAL array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
BERR
!> BERR is REAL array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
WORK
!> WORK is REAL array, dimension (3*N) !>
IWORK
!> IWORK is INTEGER array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file stbrfs.f.
subroutine ZTBRFS (character uplo, character trans, character diag, integer n, integer kd, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZTBRFS
Purpose:
!> !> ZTBRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular band !> coefficient matrix. !> !> The solution matrix X must be computed by ZTBTRS or some other !> means before entering this routine. ZTBRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
DIAG
!> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals or subdiagonals of the !> triangular band matrix A. KD >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first kd+1 rows of the array. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD+1. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file ztbrfs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |