Scroll to navigation

stevd(3) Library Functions Manual stevd(3)

NAME

stevd - stevd: eig, divide and conquer

SYNOPSIS

Functions


subroutine DSTEVD (jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine SSTEVD (jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
SSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Detailed Description

Function Documentation

subroutine DSTEVD (character jobz, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
!> real symmetric tridiagonal matrix. If eigenvectors are desired, it
!> uses a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrix.  N >= 0.
!> 

D

!>          D is DOUBLE PRECISION array, dimension (N)
!>          On entry, the n diagonal elements of the tridiagonal matrix
!>          A.
!>          On exit, if INFO = 0, the eigenvalues in ascending order.
!> 

E

!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          On entry, the (n-1) subdiagonal elements of the tridiagonal
!>          matrix A, stored in elements 1 to N-1 of E.
!>          On exit, the contents of E are destroyed.
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with D(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is DOUBLE PRECISION array,
!>                                         dimension (LWORK)
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1 then LWORK must be at least
!>                         ( 1 + 4*N + N**2 ).
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of E did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 155 of file dstevd.f.

subroutine SSTEVD (character jobz, integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

SSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> SSTEVD computes all eigenvalues and, optionally, eigenvectors of a
!> real symmetric tridiagonal matrix. If eigenvectors are desired, it
!> uses a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrix.  N >= 0.
!> 

D

!>          D is REAL array, dimension (N)
!>          On entry, the n diagonal elements of the tridiagonal matrix
!>          A.
!>          On exit, if INFO = 0, the eigenvalues in ascending order.
!> 

E

!>          E is REAL array, dimension (N-1)
!>          On entry, the (n-1) subdiagonal elements of the tridiagonal
!>          matrix A, stored in elements 1 to N-1 of E.
!>          On exit, the contents of E are destroyed.
!> 

Z

!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with D(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is REAL array,
!>                                         dimension (LWORK)
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1 then LWORK must be at least
!>                         ( 1 + 4*N + N**2 ).
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of E did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 155 of file sstevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK