table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssytd2.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssytd2.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssytd2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SSYTD2 (uplo, n, a, lda, d, e, tau, info)
SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by
an orthogonal similarity transformation (unblocked algorithm).
Function/Subroutine Documentation¶
subroutine SSYTD2 (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) tau, integer info)¶
SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
Purpose:
!> !> SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal !> form T by an orthogonal similarity transformation: Q**T * A * Q = T. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> n-by-n upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading n-by-n lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> On exit, if UPLO = 'U', the diagonal and first superdiagonal !> of A are overwritten by the corresponding elements of the !> tridiagonal matrix T, and the elements above the first !> superdiagonal, with the array TAU, represent the orthogonal !> matrix Q as a product of elementary reflectors; if UPLO !> = 'L', the diagonal and first subdiagonal of A are over- !> written by the corresponding elements of the tridiagonal !> matrix T, and the elements below the first subdiagonal, with !> the array TAU, represent the orthogonal matrix Q as a product !> of elementary reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of the tridiagonal matrix T: !> D(i) = A(i,i). !>
E
!> E is REAL array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. !>
TAU
!> TAU is REAL array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> If UPLO = 'U', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(n-1) . . . H(2) H(1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in !> A(1:i-1,i+1), and tau in TAU(i). !> !> If UPLO = 'L', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(1) H(2) . . . H(n-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), !> and tau in TAU(i). !> !> The contents of A on exit are illustrated by the following examples !> with n = 5: !> !> if UPLO = 'U': if UPLO = 'L': !> !> ( d e v2 v3 v4 ) ( d ) !> ( d e v3 v4 ) ( e d ) !> ( d e v4 ) ( v1 e d ) !> ( d e ) ( v1 v2 e d ) !> ( d ) ( v1 v2 v3 e d ) !> !> where d and e denote diagonal and off-diagonal elements of T, and vi !> denotes an element of the vector defining H(i). !>
Definition at line 172 of file ssytd2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |