Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sstt22.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sstt22.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sstt22.f

SYNOPSIS

Functions/Subroutines


subroutine SSTT22 (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, result)
SSTT22

Function/Subroutine Documentation

subroutine SSTT22 (integer n, integer m, integer kband, real, dimension( * ) ad, real, dimension( * ) ae, real, dimension( * ) sd, real, dimension( * ) se, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldwork, * ) work, integer ldwork, real, dimension( 2 ) result)

SSTT22

Purpose:

!>
!> SSTT22  checks a set of M eigenvalues and eigenvectors,
!>
!>     A U = U S
!>
!> where A is symmetric tridiagonal, the columns of U are orthogonal,
!> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
!> Two tests are performed:
!>
!>    RESULT(1) = | U' A U - S | / ( |A| m ulp )
!>
!>    RESULT(2) = | I - U'U | / ( m ulp )
!> 

Parameters

N

!>          N is INTEGER
!>          The size of the matrix.  If it is zero, SSTT22 does nothing.
!>          It must be at least zero.
!> 

M

!>          M is INTEGER
!>          The number of eigenpairs to check.  If it is zero, SSTT22
!>          does nothing.  It must be at least zero.
!> 

KBAND

!>          KBAND is INTEGER
!>          The bandwidth of the matrix S.  It may only be zero or one.
!>          If zero, then S is diagonal, and SE is not referenced.  If
!>          one, then S is symmetric tri-diagonal.
!> 

AD

!>          AD is REAL array, dimension (N)
!>          The diagonal of the original (unfactored) matrix A.  A is
!>          assumed to be symmetric tridiagonal.
!> 

AE

!>          AE is REAL array, dimension (N)
!>          The off-diagonal of the original (unfactored) matrix A.  A
!>          is assumed to be symmetric tridiagonal.  AE(1) is ignored,
!>          AE(2) is the (1,2) and (2,1) element, etc.
!> 

SD

!>          SD is REAL array, dimension (N)
!>          The diagonal of the (symmetric tri-) diagonal matrix S.
!> 

SE

!>          SE is REAL array, dimension (N)
!>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
!>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
!>          ignored, SE(2) is the (1,2) and (2,1) element, etc.
!> 

U

!>          U is REAL array, dimension (LDU, N)
!>          The orthogonal matrix in the decomposition.
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of U.  LDU must be at least N.
!> 

WORK

!>          WORK is REAL array, dimension (LDWORK, M+1)
!> 

LDWORK

!>          LDWORK is INTEGER
!>          The leading dimension of WORK.  LDWORK must be at least
!>          max(1,M).
!> 

RESULT

!>          RESULT is REAL array, dimension (2)
!>          The values computed by the two tests described above.  The
!>          values are currently limited to 1/ulp, to avoid overflow.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 137 of file sstt22.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK