table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slange.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slange.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slange.f
SYNOPSIS¶
Functions/Subroutines¶
real function SLANGE (norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a general rectangular
matrix.
Function/Subroutine Documentation¶
real function SLANGE (character norm, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
Purpose:
!> !> SLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real matrix A. !>
Returns
SLANGE
!> !> SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANGE as described !> above. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> SLANGE is set to zero. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> SLANGE is set to zero. !>
A
!> A is REAL array, dimension (LDA,N) !> The m by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 113 of file slange.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |