Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f

SYNOPSIS

Functions/Subroutines


subroutine SGGSVP (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)
SGGSVP

Function/Subroutine Documentation

subroutine SGGSVP (character jobu, character jobv, character jobq, integer m, integer p, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real tola, real tolb, integer k, integer l, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldv, * ) v, integer ldv, real, dimension( ldq, * ) q, integer ldq, integer, dimension( * ) iwork, real, dimension( * ) tau, real, dimension( * ) work, integer info)

SGGSVP

Purpose:

!>
!> This routine is deprecated and has been replaced by routine SGGSVP3.
!>
!> SGGSVP computes orthogonal matrices U, V and Q such that
!>
!>                    N-K-L  K    L
!>  U**T*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
!>                 L ( 0     0   A23 )
!>             M-K-L ( 0     0    0  )
!>
!>                  N-K-L  K    L
!>         =     K ( 0    A12  A13 )  if M-K-L < 0;
!>             M-K ( 0     0   A23 )
!>
!>                  N-K-L  K    L
!>  V**T*B*Q =   L ( 0     0   B13 )
!>             P-L ( 0     0    0  )
!>
!> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
!> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
!> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
!> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
!>
!> This decomposition is the preprocessing step for computing the
!> Generalized Singular Value Decomposition (GSVD), see subroutine
!> SGGSVD.
!> 

Parameters

JOBU

!>          JOBU is CHARACTER*1
!>          = 'U':  Orthogonal matrix U is computed;
!>          = 'N':  U is not computed.
!> 

JOBV

!>          JOBV is CHARACTER*1
!>          = 'V':  Orthogonal matrix V is computed;
!>          = 'N':  V is not computed.
!> 

JOBQ

!>          JOBQ is CHARACTER*1
!>          = 'Q':  Orthogonal matrix Q is computed;
!>          = 'N':  Q is not computed.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

P

!>          P is INTEGER
!>          The number of rows of the matrix B.  P >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrices A and B.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, A contains the triangular (or trapezoidal) matrix
!>          described in the Purpose section.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 

B

!>          B is REAL array, dimension (LDB,N)
!>          On entry, the P-by-N matrix B.
!>          On exit, B contains the triangular matrix described in
!>          the Purpose section.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,P).
!> 

TOLA

!>          TOLA is REAL
!> 

TOLB

!>          TOLB is REAL
!>
!>          TOLA and TOLB are the thresholds to determine the effective
!>          numerical rank of matrix B and a subblock of A. Generally,
!>          they are set to
!>             TOLA = MAX(M,N)*norm(A)*MACHEPS,
!>             TOLB = MAX(P,N)*norm(B)*MACHEPS.
!>          The size of TOLA and TOLB may affect the size of backward
!>          errors of the decomposition.
!> 

K

!>          K is INTEGER
!> 

L

!>          L is INTEGER
!>
!>          On exit, K and L specify the dimension of the subblocks
!>          described in Purpose section.
!>          K + L = effective numerical rank of (A**T,B**T)**T.
!> 

U

!>          U is REAL array, dimension (LDU,M)
!>          If JOBU = 'U', U contains the orthogonal matrix U.
!>          If JOBU = 'N', U is not referenced.
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of the array U. LDU >= max(1,M) if
!>          JOBU = 'U'; LDU >= 1 otherwise.
!> 

V

!>          V is REAL array, dimension (LDV,P)
!>          If JOBV = 'V', V contains the orthogonal matrix V.
!>          If JOBV = 'N', V is not referenced.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V. LDV >= max(1,P) if
!>          JOBV = 'V'; LDV >= 1 otherwise.
!> 

Q

!>          Q is REAL array, dimension (LDQ,N)
!>          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
!>          If JOBQ = 'N', Q is not referenced.
!> 

LDQ

!>          LDQ is INTEGER
!>          The leading dimension of the array Q. LDQ >= max(1,N) if
!>          JOBQ = 'Q'; LDQ >= 1 otherwise.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (N)
!> 

TAU

!>          TAU is REAL array, dimension (N)
!> 

WORK

!>          WORK is REAL array, dimension (max(3*N,M,P))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

The subroutine uses LAPACK subroutine SGEQPF for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy.

Definition at line 253 of file sggsvp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK