table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/sggsvp.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SGGSVP (jobu, jobv, jobq, m, p, n, a, lda, b,
ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)
SGGSVP
Function/Subroutine Documentation¶
subroutine SGGSVP (character jobu, character jobv, character jobq, integer m, integer p, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real tola, real tolb, integer k, integer l, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldv, * ) v, integer ldv, real, dimension( ldq, * ) q, integer ldq, integer, dimension( * ) iwork, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGGSVP
Purpose:
!> !> This routine is deprecated and has been replaced by routine SGGSVP3. !> !> SGGSVP computes orthogonal matrices U, V and Q such that !> !> N-K-L K L !> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**T*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> SGGSVD. !>
Parameters
JOBU
!> JOBU is CHARACTER*1 !> = 'U': Orthogonal matrix U is computed; !> = 'N': U is not computed. !>
JOBV
!> JOBV is CHARACTER*1 !> = 'V': Orthogonal matrix V is computed; !> = 'N': V is not computed. !>
JOBQ
!> JOBQ is CHARACTER*1 !> = 'Q': Orthogonal matrix Q is computed; !> = 'N': Q is not computed. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
P
!> P is INTEGER !> The number of rows of the matrix B. P >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
B
!> B is REAL array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix described in !> the Purpose section. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !>
TOLA
!> TOLA is REAL !>
TOLB
!> TOLB is REAL !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MACHEPS, !> TOLB = MAX(P,N)*norm(B)*MACHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !>
K
!> K is INTEGER !>
L
!> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section. !> K + L = effective numerical rank of (A**T,B**T)**T. !>
U
!> U is REAL array, dimension (LDU,M) !> If JOBU = 'U', U contains the orthogonal matrix U. !> If JOBU = 'N', U is not referenced. !>
LDU
!> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !>
V
!> V is REAL array, dimension (LDV,P) !> If JOBV = 'V', V contains the orthogonal matrix V. !> If JOBV = 'N', V is not referenced. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !>
Q
!> Q is REAL array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the orthogonal matrix Q. !> If JOBQ = 'N', Q is not referenced. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !>
IWORK
!> IWORK is INTEGER array, dimension (N) !>
TAU
!> TAU is REAL array, dimension (N) !>
WORK
!> WORK is REAL array, dimension (max(3*N,M,P)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The subroutine uses LAPACK subroutine SGEQPF for the QR
factorization with column pivoting to detect the effective numerical rank of
the a matrix. It may be replaced by a better rank determination
strategy.
Definition at line 253 of file sggsvp.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |