Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sget52.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sget52.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sget52.f

SYNOPSIS

Functions/Subroutines


subroutine SGET52 (left, n, a, lda, b, ldb, e, lde, alphar, alphai, beta, work, result)
SGET52

Function/Subroutine Documentation

subroutine SGET52 (logical left, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( lde, * ) e, integer lde, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( * ) work, real, dimension( 2 ) result)

SGET52

Purpose:

!>
!> SGET52  does an eigenvector check for the generalized eigenvalue
!> problem.
!>
!> The basic test for right eigenvectors is:
!>
!>                           | b(j) A E(j) -  a(j) B E(j) |
!>         RESULT(1) = max   -------------------------------
!>                      j    n ulp max( |b(j) A|, |a(j) B| )
!>
!> using the 1-norm.  Here, a(j)/b(j) = w is the j-th generalized
!> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th
!> generalized eigenvalue of m A - B.
!>
!> For real eigenvalues, the test is straightforward.  For complex
!> eigenvalues, E(j) and a(j) are complex, represented by
!> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that
!> eigenvector becomes
!>
!>                 max( |Wr|, |Wi| )
!>     --------------------------------------------
!>     n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| )
!>
!> where
!>
!>     Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j)
!>
!>     Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j)
!>
!>                         T   T  _
!> For left eigenvectors, A , B , a, and b  are used.
!>
!> SGET52 also tests the normalization of E.  Each eigenvector is
!> supposed to be normalized so that the maximum 
!> of its elements is 1, where in this case, 
!> of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
!> maximum  norm of a vector v  M(v).
!> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate
!> vector.  The normalization test is:
!>
!>         RESULT(2) =      max       | M(v(j)) - 1 | / ( n ulp )
!>                    eigenvectors v(j)
!> 

Parameters

LEFT

!>          LEFT is LOGICAL
!>          =.TRUE.:  The eigenvectors in the columns of E are assumed
!>                    to be *left* eigenvectors.
!>          =.FALSE.: The eigenvectors in the columns of E are assumed
!>                    to be *right* eigenvectors.
!> 

N

!>          N is INTEGER
!>          The size of the matrices.  If it is zero, SGET52 does
!>          nothing.  It must be at least zero.
!> 

A

!>          A is REAL array, dimension (LDA, N)
!>          The matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  It must be at least 1
!>          and at least N.
!> 

B

!>          B is REAL array, dimension (LDB, N)
!>          The matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  It must be at least 1
!>          and at least N.
!> 

E

!>          E is REAL array, dimension (LDE, N)
!>          The matrix of eigenvectors.  It must be O( 1 ).  Complex
!>          eigenvalues and eigenvectors always come in pairs, the
!>          eigenvalue and its conjugate being stored in adjacent
!>          elements of ALPHAR, ALPHAI, and BETA.  Thus, if a(j)/b(j)
!>          and a(j+1)/b(j+1) are a complex conjugate pair of
!>          generalized eigenvalues, then E(,j) contains the real part
!>          of the eigenvector and E(,j+1) contains the imaginary part.
!>          Note that whether E(,j) is a real eigenvector or part of a
!>          complex one is specified by whether ALPHAI(j) is zero or not.
!> 

LDE

!>          LDE is INTEGER
!>          The leading dimension of E.  It must be at least 1 and at
!>          least N.
!> 

ALPHAR

!>          ALPHAR is REAL array, dimension (N)
!>          The real parts of the values a(j) as described above, which,
!>          along with b(j), define the generalized eigenvalues.
!>          Complex eigenvalues always come in complex conjugate pairs
!>          a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent
!>          elements in ALPHAR, ALPHAI, and BETA.  Thus, if the j-th
!>          and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1)
!>          is assumed to be equal to ALPHAR(j)/BETA(j).
!> 

ALPHAI

!>          ALPHAI is REAL array, dimension (N)
!>          The imaginary parts of the values a(j) as described above,
!>          which, along with b(j), define the generalized eigenvalues.
!>          If ALPHAI(j)=0, then the eigenvalue is real, otherwise it
!>          is part of a complex conjugate pair.  Complex eigenvalues
!>          always come in complex conjugate pairs a(j)/b(j) and
!>          a(j+1)/b(j+1), which are stored in adjacent elements in
!>          ALPHAR, ALPHAI, and BETA.  Thus, if the j-th and (j+1)-st
!>          eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to
!>          be equal to  -ALPHAI(j)/BETA(j).  Also, nonzero values in
!>          ALPHAI are assumed to always come in adjacent pairs.
!> 

BETA

!>          BETA is REAL array, dimension (N)
!>          The values b(j) as described above, which, along with a(j),
!>          define the generalized eigenvalues.
!> 

WORK

!>          WORK is REAL array, dimension (N**2+N)
!> 

RESULT

!>          RESULT is REAL array, dimension (2)
!>          The values computed by the test described above.  If A E or
!>          B E is likely to overflow, then RESULT(1:2) is set to
!>          10 / ulp.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 197 of file sget52.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK