table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgehrd.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgehrd.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgehrd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SGEHRD (n, ilo, ihi, a, lda, tau, work, lwork,
info)
SGEHRD
Function/Subroutine Documentation¶
subroutine SGEHRD (integer n, integer ilo, integer ihi, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)¶
SGEHRD
Purpose:
!> !> SGEHRD reduces a real general matrix A to upper Hessenberg form H by !> an orthogonal similarity transformation: Q**T * A * Q = H . !>
Parameters
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to SGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the N-by-N general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the orthogonal matrix Q as a product of elementary !> reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAU
!> TAU is REAL array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to !> zero. !>
WORK
!> WORK is REAL array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= max(1,N). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !> !> This file is a slight modification of LAPACK-3.0's SGEHRD !> subroutine incorporating improvements proposed by Quintana-Orti and !> Van de Geijn (2006). (See SLAHR2.) !>
Definition at line 166 of file sgehrd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |