Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst2stg.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst2stg.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst2stg.f

SYNOPSIS

Functions/Subroutines


subroutine SDRVST2STG (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, d4, eveigs, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, iwork, liwork, result, info)
SDRVST2STG

Function/Subroutine Documentation

subroutine SDRVST2STG (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, real thresh, integer nounit, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d1, real, dimension( * ) d2, real, dimension( * ) d3, real, dimension( * ) d4, real, dimension( * ) eveigs, real, dimension( * ) wa1, real, dimension( * ) wa2, real, dimension( * ) wa3, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldu, * ) v, real, dimension( * ) tau, real, dimension( ldu, * ) z, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, real, dimension( * ) result, integer info)

SDRVST2STG

Purpose:

!>
!>      SDRVST2STG  checks the symmetric eigenvalue problem drivers.
!>
!>              SSTEV computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric tridiagonal matrix.
!>
!>              SSTEVX computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric tridiagonal matrix.
!>
!>              SSTEVR computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric tridiagonal matrix
!>              using the Relatively Robust Representation where it can.
!>
!>              SSYEV computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix.
!>
!>              SSYEVX computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix.
!>
!>              SSYEVR computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix
!>              using the Relatively Robust Representation where it can.
!>
!>              SSPEV computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix in packed
!>              storage.
!>
!>              SSPEVX computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix in packed
!>              storage.
!>
!>              SSBEV computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric band matrix.
!>
!>              SSBEVX computes selected eigenvalues and, optionally,
!>              eigenvectors of a real symmetric band matrix.
!>
!>              SSYEVD computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix using
!>              a divide and conquer algorithm.
!>
!>              SSPEVD computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric matrix in packed
!>              storage, using a divide and conquer algorithm.
!>
!>              SSBEVD computes all eigenvalues and, optionally,
!>              eigenvectors of a real symmetric band matrix,
!>              using a divide and conquer algorithm.
!>
!>      When SDRVST2STG is called, a number of matrix  () and a
!>      number of matrix  are specified.  For each size ()
!>      and each type of matrix, one matrix will be generated and used
!>      to test the appropriate drivers.  For each matrix and each
!>      driver routine called, the following tests will be performed:
!>
!>      (1)     | A - Z D Z' | / ( |A| n ulp )
!>
!>      (2)     | I - Z Z' | / ( n ulp )
!>
!>      (3)     | D1 - D2 | / ( |D1| ulp )
!>
!>      where Z is the matrix of eigenvectors returned when the
!>      eigenvector option is given and D1 and D2 are the eigenvalues
!>      returned with and without the eigenvector option.
!>
!>      The  are specified by an array NN(1:NSIZES); the value of
!>      each element NN(j) specifies one size.
!>      The  are specified by a logical array DOTYPE( 1:NTYPES );
!>      if DOTYPE(j) is .TRUE., then matrix type  will be generated.
!>      Currently, the list of possible types is:
!>
!>      (1)  The zero matrix.
!>      (2)  The identity matrix.
!>
!>      (3)  A diagonal matrix with evenly spaced eigenvalues
!>           1, ..., ULP  and random signs.
!>           (ULP = (first number larger than 1) - 1 )
!>      (4)  A diagonal matrix with geometrically spaced eigenvalues
!>           1, ..., ULP  and random signs.
!>      (5)  A diagonal matrix with  eigenvalues
!>           1, ULP, ..., ULP and random signs.
!>
!>      (6)  Same as (4), but multiplied by SQRT( overflow threshold )
!>      (7)  Same as (4), but multiplied by SQRT( underflow threshold )
!>
!>      (8)  A matrix of the form  U' D U, where U is orthogonal and
!>           D has evenly spaced entries 1, ..., ULP with random signs
!>           on the diagonal.
!>
!>      (9)  A matrix of the form  U' D U, where U is orthogonal and
!>           D has geometrically spaced entries 1, ..., ULP with random
!>           signs on the diagonal.
!>
!>      (10) A matrix of the form  U' D U, where U is orthogonal and
!>           D has  entries 1, ULP,..., ULP with random
!>           signs on the diagonal.
!>
!>      (11) Same as (8), but multiplied by SQRT( overflow threshold )
!>      (12) Same as (8), but multiplied by SQRT( underflow threshold )
!>
!>      (13) Symmetric matrix with random entries chosen from (-1,1).
!>      (14) Same as (13), but multiplied by SQRT( overflow threshold )
!>      (15) Same as (13), but multiplied by SQRT( underflow threshold )
!>      (16) A band matrix with half bandwidth randomly chosen between
!>           0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
!>           with random signs.
!>      (17) Same as (16), but multiplied by SQRT( overflow threshold )
!>      (18) Same as (16), but multiplied by SQRT( underflow threshold )
!> 

!>  NSIZES  INTEGER
!>          The number of sizes of matrices to use.  If it is zero,
!>          SDRVST2STG does nothing.  It must be at least zero.
!>          Not modified.
!>
!>  NN      INTEGER array, dimension (NSIZES)
!>          An array containing the sizes to be used for the matrices.
!>          Zero values will be skipped.  The values must be at least
!>          zero.
!>          Not modified.
!>
!>  NTYPES  INTEGER
!>          The number of elements in DOTYPE.   If it is zero, SDRVST2STG
!>          does nothing.  It must be at least zero.  If it is MAXTYP+1
!>          and NSIZES is 1, then an additional type, MAXTYP+1 is
!>          defined, which is to use whatever matrix is in A.  This
!>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
!>          DOTYPE(MAXTYP+1) is .TRUE. .
!>          Not modified.
!>
!>  DOTYPE  LOGICAL array, dimension (NTYPES)
!>          If DOTYPE(j) is .TRUE., then for each size in NN a
!>          matrix of that size and of type j will be generated.
!>          If NTYPES is smaller than the maximum number of types
!>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
!>          MAXTYP will not be generated.  If NTYPES is larger
!>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
!>          will be ignored.
!>          Not modified.
!>
!>  ISEED   INTEGER array, dimension (4)
!>          On entry ISEED specifies the seed of the random number
!>          generator. The array elements should be between 0 and 4095;
!>          if not they will be reduced mod 4096.  Also, ISEED(4) must
!>          be odd.  The random number generator uses a linear
!>          congruential sequence limited to small integers, and so
!>          should produce machine independent random numbers. The
!>          values of ISEED are changed on exit, and can be used in the
!>          next call to SDRVST2STG to continue the same random number
!>          sequence.
!>          Modified.
!>
!>  THRESH  REAL
!>          A test will count as  if the , computed as
!>          described above, exceeds THRESH.  Note that the error
!>          is scaled to be O(1), so THRESH should be a reasonably
!>          small multiple of 1, e.g., 10 or 100.  In particular,
!>          it should not depend on the precision (single vs. double)
!>          or the size of the matrix.  It must be at least zero.
!>          Not modified.
!>
!>  NOUNIT  INTEGER
!>          The FORTRAN unit number for printing out error messages
!>          (e.g., if a routine returns IINFO not equal to 0.)
!>          Not modified.
!>
!>  A       REAL             array, dimension (LDA , max(NN))
!>          Used to hold the matrix whose eigenvalues are to be
!>          computed.  On exit, A contains the last matrix actually
!>          used.
!>          Modified.
!>
!>  LDA     INTEGER
!>          The leading dimension of A.  It must be at
!>          least 1 and at least max( NN ).
!>          Not modified.
!>
!>  D1      REAL             array, dimension (max(NN))
!>          The eigenvalues of A, as computed by SSTEQR simultaneously
!>          with Z.  On exit, the eigenvalues in D1 correspond with the
!>          matrix in A.
!>          Modified.
!>
!>  D2      REAL             array, dimension (max(NN))
!>          The eigenvalues of A, as computed by SSTEQR if Z is not
!>          computed.  On exit, the eigenvalues in D2 correspond with
!>          the matrix in A.
!>          Modified.
!>
!>  D3      REAL             array, dimension (max(NN))
!>          The eigenvalues of A, as computed by SSTERF.  On exit, the
!>          eigenvalues in D3 correspond with the matrix in A.
!>          Modified.
!>
!>  D4      REAL             array, dimension
!>
!>  EVEIGS  REAL array, dimension (max(NN))
!>          The eigenvalues as computed by SSTEV('N', ... )
!>          (I reserve the right to change this to the output of
!>          whichever algorithm computes the most accurate eigenvalues).
!>
!>  WA1     REAL array, dimension
!>
!>  WA2     REAL array, dimension
!>
!>  WA3     REAL array, dimension
!>
!>  U       REAL             array, dimension (LDU, max(NN))
!>          The orthogonal matrix computed by SSYTRD + SORGTR.
!>          Modified.
!>
!>  LDU     INTEGER
!>          The leading dimension of U, Z, and V.  It must be at
!>          least 1 and at least max( NN ).
!>          Not modified.
!>
!>  V       REAL             array, dimension (LDU, max(NN))
!>          The Housholder vectors computed by SSYTRD in reducing A to
!>          tridiagonal form.
!>          Modified.
!>
!>  TAU     REAL array, dimension (max(NN))
!>          The Householder factors computed by SSYTRD in reducing A
!>          to tridiagonal form.
!>          Modified.
!>
!>  Z       REAL             array, dimension (LDU, max(NN))
!>          The orthogonal matrix of eigenvectors computed by SSTEQR,
!>          SPTEQR, and SSTEIN.
!>          Modified.
!>
!>  WORK    REAL array, dimension (LWORK)
!>          Workspace.
!>          Modified.
!>
!>  LWORK   INTEGER
!>          The number of entries in WORK.  This must be at least
!>          1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
!>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
!>          Not modified.
!>
!>  IWORK   INTEGER array,
!>             dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
!>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
!>          Workspace.
!>          Modified.
!>
!>  RESULT  REAL array, dimension (105)
!>          The values computed by the tests described above.
!>          The values are currently limited to 1/ulp, to avoid
!>          overflow.
!>          Modified.
!>
!>  INFO    INTEGER
!>          If 0, then everything ran OK.
!>           -1: NSIZES < 0
!>           -2: Some NN(j) < 0
!>           -3: NTYPES < 0
!>           -5: THRESH < 0
!>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
!>          -16: LDU < 1 or LDU < NMAX.
!>          -21: LWORK too small.
!>          If  SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
!>              or SORMTR returns an error code, the
!>              absolute value of it is returned.
!>          Modified.
!>
!>-----------------------------------------------------------------------
!>
!>       Some Local Variables and Parameters:
!>       ---- ----- --------- --- ----------
!>       ZERO, ONE       Real 0 and 1.
!>       MAXTYP          The number of types defined.
!>       NTEST           The number of tests performed, or which can
!>                       be performed so far, for the current matrix.
!>       NTESTT          The total number of tests performed so far.
!>       NMAX            Largest value in NN.
!>       NMATS           The number of matrices generated so far.
!>       NERRS           The number of tests which have exceeded THRESH
!>                       so far (computed by SLAFTS).
!>       COND, IMODE     Values to be passed to the matrix generators.
!>       ANORM           Norm of A; passed to matrix generators.
!>
!>       OVFL, UNFL      Overflow and underflow thresholds.
!>       ULP, ULPINV     Finest relative precision and its inverse.
!>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
!>               The following four arrays decode JTYPE:
!>       KTYPE(j)        The general type (1-10) for type .
!>       KMODE(j)        The MODE value to be passed to the matrix
!>                       generator for type .
!>       KMAGN(j)        The order of magnitude ( O(1),
!>                       O(overflow^(1/2) ), O(underflow^(1/2) )
!>
!>     The tests performed are:                 Routine tested
!>    1= | A - U S U' | / ( |A| n ulp )         SSTEV('V', ... )
!>    2= | I - U U' | / ( n ulp )               SSTEV('V', ... )
!>    3= |D(with Z) - D(w/o Z)| / (|D| ulp)     SSTEV('N', ... )
!>    4= | A - U S U' | / ( |A| n ulp )         SSTEVX('V','A', ... )
!>    5= | I - U U' | / ( n ulp )               SSTEVX('V','A', ... )
!>    6= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVX('N','A', ... )
!>    7= | A - U S U' | / ( |A| n ulp )         SSTEVR('V','A', ... )
!>    8= | I - U U' | / ( n ulp )               SSTEVR('V','A', ... )
!>    9= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVR('N','A', ... )
!>    10= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','I', ... )
!>    11= | I - U U' | / ( n ulp )              SSTEVX('V','I', ... )
!>    12= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','I', ... )
!>    13= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','V', ... )
!>    14= | I - U U' | / ( n ulp )              SSTEVX('V','V', ... )
!>    15= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','V', ... )
!>    16= | A - U S U' | / ( |A| n ulp )        SSTEVD('V', ... )
!>    17= | I - U U' | / ( n ulp )              SSTEVD('V', ... )
!>    18= |D(with Z) - EVEIGS| / (|D| ulp)      SSTEVD('N', ... )
!>    19= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','I', ... )
!>    20= | I - U U' | / ( n ulp )              SSTEVR('V','I', ... )
!>    21= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','I', ... )
!>    22= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','V', ... )
!>    23= | I - U U' | / ( n ulp )              SSTEVR('V','V', ... )
!>    24= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','V', ... )
!>
!>    25= | A - U S U' | / ( |A| n ulp )        SSYEV('L','V', ... )
!>    26= | I - U U' | / ( n ulp )              SSYEV('L','V', ... )
!>    27= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEV_2STAGE('L','N', ... )
!>    28= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','A', ... )
!>    29= | I - U U' | / ( n ulp )              SSYEVX('L','V','A', ... )
!>    30= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','A', ... )
!>    31= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','I', ... )
!>    32= | I - U U' | / ( n ulp )              SSYEVX('L','V','I', ... )
!>    33= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','I', ... )
!>    34= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','V', ... )
!>    35= | I - U U' | / ( n ulp )              SSYEVX('L','V','V', ... )
!>    36= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','V', ... )
!>    37= | A - U S U' | / ( |A| n ulp )        SSPEV('L','V', ... )
!>    38= | I - U U' | / ( n ulp )              SSPEV('L','V', ... )
!>    39= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEV('L','N', ... )
!>    40= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','A', ... )
!>    41= | I - U U' | / ( n ulp )              SSPEVX('L','V','A', ... )
!>    42= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','A', ... )
!>    43= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','I', ... )
!>    44= | I - U U' | / ( n ulp )              SSPEVX('L','V','I', ... )
!>    45= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','I', ... )
!>    46= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','V', ... )
!>    47= | I - U U' | / ( n ulp )              SSPEVX('L','V','V', ... )
!>    48= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','V', ... )
!>    49= | A - U S U' | / ( |A| n ulp )        SSBEV('L','V', ... )
!>    50= | I - U U' | / ( n ulp )              SSBEV('L','V', ... )
!>    51= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEV_2STAGE('L','N', ... )
!>    52= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','A', ... )
!>    53= | I - U U' | / ( n ulp )              SSBEVX('L','V','A', ... )
!>    54= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','A', ... )
!>    55= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','I', ... )
!>    56= | I - U U' | / ( n ulp )              SSBEVX('L','V','I', ... )
!>    57= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','I', ... )
!>    58= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','V', ... )
!>    59= | I - U U' | / ( n ulp )              SSBEVX('L','V','V', ... )
!>    60= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','V', ... )
!>    61= | A - U S U' | / ( |A| n ulp )        SSYEVD('L','V', ... )
!>    62= | I - U U' | / ( n ulp )              SSYEVD('L','V', ... )
!>    63= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVD_2STAGE('L','N', ... )
!>    64= | A - U S U' | / ( |A| n ulp )        SSPEVD('L','V', ... )
!>    65= | I - U U' | / ( n ulp )              SSPEVD('L','V', ... )
!>    66= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVD('L','N', ... )
!>    67= | A - U S U' | / ( |A| n ulp )        SSBEVD('L','V', ... )
!>    68= | I - U U' | / ( n ulp )              SSBEVD('L','V', ... )
!>    69= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVD_2STAGE('L','N', ... )
!>    70= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','A', ... )
!>    71= | I - U U' | / ( n ulp )              SSYEVR('L','V','A', ... )
!>    72= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','A', ... )
!>    73= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','I', ... )
!>    74= | I - U U' | / ( n ulp )              SSYEVR('L','V','I', ... )
!>    75= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','I', ... )
!>    76= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','V', ... )
!>    77= | I - U U' | / ( n ulp )              SSYEVR('L','V','V', ... )
!>    78= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','V', ... )
!>
!>    Tests 25 through 78 are repeated (as tests 79 through 132)
!>    with UPLO='U'
!>
!>    To be added in 1999
!>
!>    79= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','A', ... )
!>    80= | I - U U' | / ( n ulp )              SSPEVR('L','V','A', ... )
!>    81= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','A', ... )
!>    82= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','I', ... )
!>    83= | I - U U' | / ( n ulp )              SSPEVR('L','V','I', ... )
!>    84= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','I', ... )
!>    85= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','V', ... )
!>    86= | I - U U' | / ( n ulp )              SSPEVR('L','V','V', ... )
!>    87= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','V', ... )
!>    88= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','A', ... )
!>    89= | I - U U' | / ( n ulp )              SSBEVR('L','V','A', ... )
!>    90= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','A', ... )
!>    91= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','I', ... )
!>    92= | I - U U' | / ( n ulp )              SSBEVR('L','V','I', ... )
!>    93= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','I', ... )
!>    94= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','V', ... )
!>    95= | I - U U' | / ( n ulp )              SSBEVR('L','V','V', ... )
!>    96= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','V', ... )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 449 of file sdrvst2stg.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK