table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sbdt03.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sbdt03.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sbdt03.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SBDT03 (uplo, n, kd, d, e, u, ldu, s, vt, ldvt,
work, resid)
SBDT03
Function/Subroutine Documentation¶
subroutine SBDT03 (character uplo, integer n, integer kd, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldu, * ) u, integer ldu, real, dimension( * ) s, real, dimension( ldvt, * ) vt, integer ldvt, real, dimension( * ) work, real resid)¶
SBDT03
Purpose:
!> !> SBDT03 reconstructs a bidiagonal matrix B from its SVD: !> S = U' * B * V !> where U and V are orthogonal matrices and S is diagonal. !> !> The test ratio to test the singular value decomposition is !> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS ) !> where VT = V' and EPS is the machine precision. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the matrix B is upper or lower bidiagonal. !> = 'U': Upper bidiagonal !> = 'L': Lower bidiagonal !>
N
!> N is INTEGER !> The order of the matrix B. !>
KD
!> KD is INTEGER !> The bandwidth of the bidiagonal matrix B. If KD = 1, the !> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is !> not referenced. If KD is greater than 1, it is assumed to be !> 1, and if KD is less than 0, it is assumed to be 0. !>
D
!> D is REAL array, dimension (N) !> The n diagonal elements of the bidiagonal matrix B. !>
E
!> E is REAL array, dimension (N-1) !> The (n-1) superdiagonal elements of the bidiagonal matrix B !> if UPLO = 'U', or the (n-1) subdiagonal elements of B if !> UPLO = 'L'. !>
U
!> U is REAL array, dimension (LDU,N) !> The n by n orthogonal matrix U in the reduction B = U'*A*P. !>
LDU
!> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,N) !>
S
!> S is REAL array, dimension (N) !> The singular values from the SVD of B, sorted in decreasing !> order. !>
VT
!> VT is REAL array, dimension (LDVT,N) !> The n by n orthogonal matrix V' in the reduction !> B = U * S * V'. !>
LDVT
!> LDVT is INTEGER !> The leading dimension of the array VT. !>
WORK
!> WORK is REAL array, dimension (2*N) !>
RESID
!> RESID is REAL !> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 133 of file sbdt03.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |