table of contents
rotg(3) | Library Functions Manual | rotg(3) |
NAME¶
rotg - rotg: generate plane rotation (cf. lartg)
SYNOPSIS¶
Functions¶
subroutine CROTG (a, b, c, s)
CROTG generates a Givens rotation with real cosine and complex sine.
subroutine DROTG (a, b, c, s)
DROTG subroutine SROTG (a, b, c, s)
SROTG subroutine ZROTG (a, b, c, s)
ZROTG generates a Givens rotation with real cosine and complex sine.
Detailed Description¶
Function Documentation¶
subroutine CROTG (complex(wp) a, complex(wp) b, real(wp) c, complex(wp) s)¶
CROTG generates a Givens rotation with real cosine and complex sine.
Purpose:
!> !> CROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in SROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by SROTG !> if the signs of a and b are not the same. !> !>
See also
lartgp: generate plane rotation, more accurate than BLAS rot
Parameters
!> A is COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !>
B
!> B is COMPLEX !> The scalar b. !>
C
!> C is REAL !> The scalar c. !>
S
!> S is COMPLEX !> The scalar s. !>
Author
Date
Further Details:
!> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 88 of file crotg.f90.
subroutine DROTG (real(wp) a, real(wp) b, real(wp) c, real(wp) s)¶
DROTG
Purpose:
!> !> DROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -s c ] [ b ] [ 0 ] !> satisfying c**2 + s**2 = 1. !> !> The computation uses the formulas !> sigma = sgn(a) if |a| > |b| !> = sgn(b) if |b| >= |a| !> r = sigma*sqrt( a**2 + b**2 ) !> c = 1; s = 0 if r = 0 !> c = a/r; s = b/r if r != 0 !> The subroutine also computes !> z = s if |a| > |b|, !> = 1/c if |b| >= |a| and c != 0 !> = 1 if c = 0 !> This allows c and s to be reconstructed from z as follows: !> If z = 1, set c = 0, s = 1. !> If |z| < 1, set c = sqrt(1 - z**2) and s = z. !> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). !> !>
See also
lartgp: generate plane rotation, more accurate than BLAS rot
Parameters
!> A is DOUBLE PRECISION !> On entry, the scalar a. !> On exit, the scalar r. !>
B
!> B is DOUBLE PRECISION !> On entry, the scalar b. !> On exit, the scalar z. !>
C
!> C is DOUBLE PRECISION !> The scalar c. !>
S
!> S is DOUBLE PRECISION !> The scalar s. !>
Author
Contributors:
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 91 of file drotg.f90.
subroutine SROTG (real(wp) a, real(wp) b, real(wp) c, real(wp) s)¶
SROTG
Purpose:
!> !> SROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -s c ] [ b ] [ 0 ] !> satisfying c**2 + s**2 = 1. !> !> The computation uses the formulas !> sigma = sgn(a) if |a| > |b| !> = sgn(b) if |b| >= |a| !> r = sigma*sqrt( a**2 + b**2 ) !> c = 1; s = 0 if r = 0 !> c = a/r; s = b/r if r != 0 !> The subroutine also computes !> z = s if |a| > |b|, !> = 1/c if |b| >= |a| and c != 0 !> = 1 if c = 0 !> This allows c and s to be reconstructed from z as follows: !> If z = 1, set c = 0, s = 1. !> If |z| < 1, set c = sqrt(1 - z**2) and s = z. !> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). !> !>
See also
lartgp: generate plane rotation, more accurate than BLAS rot
Parameters
!> A is REAL !> On entry, the scalar a. !> On exit, the scalar r. !>
B
!> B is REAL !> On entry, the scalar b. !> On exit, the scalar z. !>
C
!> C is REAL !> The scalar c. !>
S
!> S is REAL !> The scalar s. !>
Author
Contributors:
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 91 of file srotg.f90.
subroutine ZROTG (complex(wp) a, complex(wp) b, real(wp) c, complex(wp) s)¶
ZROTG generates a Givens rotation with real cosine and complex sine.
Purpose:
!> !> ZROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in DROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by DROTG !> if the signs of a and b are not the same. !> !>
See also
lartgp: generate plane rotation, more accurate than BLAS rot
Parameters
!> A is DOUBLE COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !>
B
!> B is DOUBLE COMPLEX !> The scalar b. !>
C
!> C is DOUBLE PRECISION !> The scalar c. !>
S
!> S is DOUBLE COMPLEX !> The scalar s. !>
Author
Date
Further Details:
!> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 88 of file zrotg.f90.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |