Scroll to navigation

ppsv(3) Library Functions Manual ppsv(3)

NAME

ppsv - ppsv: factor and solve

SYNOPSIS

Functions


subroutine CPPSV (uplo, n, nrhs, ap, b, ldb, info)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine DPPSV (uplo, n, nrhs, ap, b, ldb, info)
DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine SPPSV (uplo, n, nrhs, ap, b, ldb, info)
SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine ZPPSV (uplo, n, nrhs, ap, b, ldb, info)
ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Detailed Description

Function Documentation

subroutine CPPSV (character uplo, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension( ldb, * ) b, integer ldb, integer info)

CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

!>
!> CPPSV computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N Hermitian positive definite matrix stored in
!> packed format and X and B are N-by-NRHS matrices.
!>
!> The Cholesky decomposition is used to factor A as
!>    A = U**H * U,  if UPLO = 'U', or
!>    A = L * L**H,  if UPLO = 'L',
!> where U is an upper triangular matrix and L is a lower triangular
!> matrix.  The factored form of A is then used to solve the system of
!> equations A * X = B.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          See below for further details.
!>
!>          On exit, if INFO = 0, the factor U or L from the Cholesky
!>          factorization A = U**H*U or A = L*L**H, in the same storage
!>          format as A.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading principal minor of order i
!>                of A is not positive, so the factorization could not
!>                be completed, and the solution has not been computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The packed storage scheme is illustrated by the following example
!>  when N = 4, UPLO = 'U':
!>
!>  Two-dimensional storage of the Hermitian matrix A:
!>
!>     a11 a12 a13 a14
!>         a22 a23 a24
!>             a33 a34     (aij = conjg(aji))
!>                 a44
!>
!>  Packed storage of the upper triangle of A:
!>
!>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
!> 

Definition at line 143 of file cppsv.f.

subroutine DPPSV (character uplo, integer n, integer nrhs, double precision, dimension( * ) ap, double precision, dimension( ldb, * ) b, integer ldb, integer info)

DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

!>
!> DPPSV computes the solution to a real system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric positive definite matrix stored in
!> packed format and X and B are N-by-NRHS matrices.
!>
!> The Cholesky decomposition is used to factor A as
!>    A = U**T* U,  if UPLO = 'U', or
!>    A = L * L**T,  if UPLO = 'L',
!> where U is an upper triangular matrix and L is a lower triangular
!> matrix.  The factored form of A is then used to solve the system of
!> equations A * X = B.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          See below for further details.
!>
!>          On exit, if INFO = 0, the factor U or L from the Cholesky
!>          factorization A = U**T*U or A = L*L**T, in the same storage
!>          format as A.
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading principal minor of order i
!>                of A is not positive, so the factorization could not
!>                be completed, and the solution has not been computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The packed storage scheme is illustrated by the following example
!>  when N = 4, UPLO = 'U':
!>
!>  Two-dimensional storage of the symmetric matrix A:
!>
!>     a11 a12 a13 a14
!>         a22 a23 a24
!>             a33 a34     (aij = conjg(aji))
!>                 a44
!>
!>  Packed storage of the upper triangle of A:
!>
!>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
!> 

Definition at line 143 of file dppsv.f.

subroutine SPPSV (character uplo, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, integer info)

SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

!>
!> SPPSV computes the solution to a real system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric positive definite matrix stored in
!> packed format and X and B are N-by-NRHS matrices.
!>
!> The Cholesky decomposition is used to factor A as
!>    A = U**T* U,  if UPLO = 'U', or
!>    A = L * L**T,  if UPLO = 'L',
!> where U is an upper triangular matrix and L is a lower triangular
!> matrix.  The factored form of A is then used to solve the system of
!> equations A * X = B.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is REAL array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          See below for further details.
!>
!>          On exit, if INFO = 0, the factor U or L from the Cholesky
!>          factorization A = U**T*U or A = L*L**T, in the same storage
!>          format as A.
!> 

B

!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading principal minor of order i
!>                of A is not positive, so the factorization could not
!>                be completed, and the solution has not been computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The packed storage scheme is illustrated by the following example
!>  when N = 4, UPLO = 'U':
!>
!>  Two-dimensional storage of the symmetric matrix A:
!>
!>     a11 a12 a13 a14
!>         a22 a23 a24
!>             a33 a34     (aij = conjg(aji))
!>                 a44
!>
!>  Packed storage of the upper triangle of A:
!>
!>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
!> 

Definition at line 143 of file sppsv.f.

subroutine ZPPSV (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

!>
!> ZPPSV computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N Hermitian positive definite matrix stored in
!> packed format and X and B are N-by-NRHS matrices.
!>
!> The Cholesky decomposition is used to factor A as
!>    A = U**H * U,  if UPLO = 'U', or
!>    A = L * L**H,  if UPLO = 'L',
!> where U is an upper triangular matrix and L is a lower triangular
!> matrix.  The factored form of A is then used to solve the system of
!> equations A * X = B.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          See below for further details.
!>
!>          On exit, if INFO = 0, the factor U or L from the Cholesky
!>          factorization A = U**H*U or A = L*L**H, in the same storage
!>          format as A.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading principal minor of order i
!>                of A is not positive, so the factorization could not
!>                be completed, and the solution has not been computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The packed storage scheme is illustrated by the following example
!>  when N = 4, UPLO = 'U':
!>
!>  Two-dimensional storage of the Hermitian matrix A:
!>
!>     a11 a12 a13 a14
!>         a22 a23 a24
!>             a33 a34     (aij = conjg(aji))
!>                 a44
!>
!>  Packed storage of the upper triangle of A:
!>
!>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
!> 

Definition at line 143 of file zppsv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK